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effective field theory

M. Piarulli ' L. Girlanda 2 R. Schiavilla ® A. Kievsky * A. Lovato ! L.E. Marcucci ® S.C. Pieper !

M. Viviani 4 R.B. Wiringa !

!Physics Division, Argonne National Laboratory, Argonne, Illinois, USA

2Dipartimento di Matematica e Fisica “E. De Giorgi”, Universitd del Salento, and INFN-Lecce, Italy

3Theory Center, Jefferson Laboratory, Newport News, Virginia, USA

4Istituto Nazionale di Fisica Nucleare, sez. di Pisa, Italy

5Department of Physics, University of Pisa, and INFN-Pisa, Italy

Many areas of current frontier research in par-
ticle physics require accurate input from nuclear
physics. The theoretical uncertainties that are in-
troduced fall into two categories, one due to the
unknown nuclear interaction and another one due
to the difficulties in the treatment of many-body
strongly interacting systems. The increasing pop-
ularity of so-called “chiral” nuclear interaction
potentials, based on an effective field theory con-
strained by the (approximate) chiral symmetry
of quantum chromodynamics, is also due to the
possibility of quantifying the theoretical uncer-
tainty, owing to the emergence of a well defined
perturbative framework, valid in the low-energy
domain. One of the short-comings of this ap-
proach is the fact that the ensuing interactions are
non-local in coordinate space, which makes them
little suited for exact numerical techniques, such
as Quantum Monte Carlo (QMC) methods. Non-
localities arise from the choice of the momentum-
space regulator needed to obtain coordinate-space
expressions, and from the contact interactions,
which represent the low-momentum parametriza-
tion of unknown short-distance physics. The lat-
ter non-localities are unavoidable, if one proceeds
at high orders of the low-energy expansion, as we
showed in Ref. [1].

In Ref. [2] we provide a local version of the
previously developed potential, derived up to the
4th order (N3LO) in the chiral effective theory
including the A resonance, by performing con-
strained fits to nucleon-nucleon scattering observ-
ables up to 200 MeV laboratory energy and to
the deuteron binding energy. We used a set of
almost 3700 experimental points as provided by
the Granada database [3].

The good quality of the fits (cfr. Fig. 2 can be
taken as an indication that current data do not
constrain the non-local structures that emerge at
N3LO. The bands in the figures represent the
variation with the short-distance cutoff. This is
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Figure 1. Chiral expansion of the neutron-proton
(top two panels) and proton-proton (bottom panel)
S-, P- and D-wave phaseshifts up to 125 MeV labo-
ratory energy. The dots are the results of three dif-
ferent partial-wave analyses, from Nijmegen, Gross
and Stadler, and Granada. Dashed (blue), dash-
dotted (green), double-dash-dotted (magenta), and
solid (red) lines correspond to LO, NLO, N2LO and
N3LO respectively.
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Figure 2. S-, P- and D-wave phaseshifts for neutron-proton in isospin 0 and 1 channels (top two panels) and
proton-proton (bottom panel). as predicted in our models (bands) and in the Nijmegen, Gross and Stadler, and

Granada partial wave analyses.

a defining parameter of the effective field the-
ory, representing the scale at which new physics
(not explicitly considered in the effective field the-
ory) comes into play. It may be considered as
a tool to estimate the truncation error of the
low-momentum expansion, and thus the theoret-
ical uncertainty of the calculation: an all-order
calculation would be unaffected by such varia-
tion. The resulting x? is of the same quality
as modern “realistic” nuclear potential, such as
the widely used phenomenological AV18 [4]. In
Fig. 1 we show the order-by-order convergence of
the NN phaseshifts, for one given choice of the
cutoff. It is seen that, while there is a definite
improvement passing from leading order (LO,
dashed-blue) to NLO (dashed-dotted, green), the
N2LO results (double-dashed-dotted, magenta)
are slightly worse than at NLO, while only at
N3LO (solid, red) a satisfactory description is
reached. We notice that no new fitting param-
eter enters in passing from NLO to N2LO, since
the additional terms are fixed by low-energy pion-
nucleon scattering. This makes the convergence

pattern not entirely satisfactory and may call for
a combined consideration of the NN and 7N sys-
tems, In Ref. [2] we also used the so-derived NN
interaction to calculate the ground and excited
states of 3H, 3He, *He, He and SLi nuclei, with
the hyperspherical harmonics and QMC meth-
ods, thus demonstrating its suitability in these
domains.
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