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Strongly not relatives Kähler manifolds
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According to [3], two Kähler manifolds are
called relatives when they share a common Kähler
submanifold, i.e. if a complex submanifold of one
of them with the induced metric is biholomor-
phically isometric to a complex submanifold of
the other one with the induced metric. In his
seminal paper [1], Calabi determined a criterion
which characterizes Kähler manifolds admitting
a Kähler immersion into finite or infinite dimen-
sional complex space forms. The main tool he
introduced is the diastasis function associated to
a real analytic Kähler manifold, namely a partic-
ular Kähler potential characterized by being in-
variant under pull–back through a holomorphic
map. Thanks to this property, the diastasis plays
a key role in studying when two Kähler manifolds
are relatives.

In [4] I have been interested in characterizing
Kähler manifolds that are strongly not relative to
any projective Kähler manifold, i.e. those Kähler
manifolds that do not share a Kähler subman-
ifold with any projective Kähler manifold even
when their metric is rescaled by the multiplica-
tion by a positive constant. Here with projective
Kähler manifold I mean a Kähler manifold admit-
ting a local holomorphic and isometric (from now
on Kähler) immersion into the finite dimensional
complex projective space CPN endowed with its
Fubini–Study metric gFS . The sufficient condi-
tions I stated are given in terms of the existence
of a full Kähler immersion into the infinite di-
mensional complex projective space (CP∞, gFS),
where full means that the image of the Kähler
manifold is not contained into a lower dimensional
(CPN , gFS) for any N <∞.

The first result achieved in [4] can be stated as
follows:

Theorem 1. Let (M, g) be a Kähler manifold
such that (M,βg) admits a full Kähler immer-
sion into (CP∞, gFS) for any β > β0 ≥ 0. If
(M, g) and (CPn, gFS) are not relatives for any
n < ∞, then (M, g) is strongly not relative to
any projective Kähler manifold.

Observe that in general there are not reasons
for a Kähler manifold which is not relative to
another Kähler manifold to remain so when its
metric is rescaled. For example, consider that

the complex projective space (CP2, c gFS) where
gFS is the Fubini–Study metric, for c = 2

3 is not
relative to (CP2, gFS), while for positive integer
values of c it is (see [2] for a proof).

In order to state the second result achieved
in [4], consider a d-dimensional Kähler man-
ifold (M, g) which admits global coordinates
{z1, . . . , zd} and denote by Mj the 1-dimensional
submanifold of M defined by:

Mj = {z ∈M | zk = 0 ∀ k 6= j}.

When exists, a Kähler immersion f : M → CP∞,
f∗gFS = g, is said to be transversally full when
for any j = 1, . . . , d, the immersion restricted to
Mj is full into (CP∞, gFS).

Theorem 2. Let (M, g) be a Kähler mani-
fold which admits a full Kähler immersion into
(CP∞, gFS) through a transversally full map. If
for any α ≥ α0 > 0, (M,α g) admits a full
Kähler immersion into (CP∞, gFS), then (M, g)
is strongly not relative to any projective Kähler
manifold.

The proof of both theorems are completely
based on the properties of the diastasis function
associated to a Kähler manifold.

Finally, Theorem 1 and Theorem 2 are applied
to two 1-parameter families of Hartogs-type do-
mains, proving that they are strongly not relative
to any projective Kähler manifold.
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