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1. Inverse Scattering Transform for NLS
systems with non-zero boundary condi-
tions

In [1] we developed the inverse scattering
transform (IST) for the defocusing nonlinear
Schrodinger (NLS) equation:

iqt = qxx − 2|q|2q

with fully asymmetric non-zero boundary condi-
tions as x → ±∞, (i.e., when the limiting values
of the solution at space infinities have different
non zero moduli). The theory is formulated with-
out making use of Riemann surfaces, and instead
by dealing explicitly with the branched nature of
the eigenvalues of the associated scattering prob-
lem. For the direct problem, we gave explicit
single-valued definitions of the Jost eigenfunc-
tions and scattering coefficients over the whole
complex plane, and we characterized their dis-
continuous behavior across the branch cut arising
from the square root behavior of the correspond-
ing eigenvalues. We posed the inverse problem as
a Riemann-Hilbert problem on an open contour,
and we reduced the problem to a standard set
of linear integral equations. Finally, for compari-
son purposes, we also presented the single-sheet,
branch cut formulation of the inverse scattering
transform for the initial value problem with sym-
metric (equimodular) non-zero boundary condi-
tions, as well as for the initial value problem with
one-sided non-zero boundary conditions, and we
also briefly described the formulation of the in-
verse scattering transform when a different choice
is made for the location of the branch cuts.

In [2] we presented a rigorous theory of the IST
for the three-component defocusing NLS equation
with initial conditions approaching constant val-
ues with the same amplitude as x → ±∞. The
theory combines and extends to a problem with
non-zero boundary conditions three fundamental
ideas: (i) the tensor approach used by Beals, Deift
and Tomei for the n-th order scattering problem,
(ii) the triangular decompositions of the scatter-
ing matrix used by Novikov, Manakov, Pitaevski
and Zakharov for the N-wave interaction equa-
tions, and (iii) a generalization of the cross prod-

Figure 1. Discrete analog of the Tajiri-Watanabe
soliton.

uct via the Hodge star duality, which, to the best
of our knowledge, is used in the context of the
IST for the first time in this work. The combina-
tion of the first two ideas allows us to rigorously
obtain a fundamental set of analytic eigenfunc-
tions. The third idea allows us to establish the
symmetries of the eigenfunctions and scattering
data. The results are used to characterize the
discrete spectrum and to obtain exact soliton so-
lutions, which describe generalizations of the so-
called dark-bright solitons of the two-component
NLS equation.

2. Inverse Scattering Transform and soli-
ton solutions for the focusing Ablowitz-
Ladik equation with non-zero boundary
conditions

The focus of [3,4] is a semi-discrete (discrete
in space, continuous in time) version of the NLS
equation above. In general, a discretization of
an integrable PDE is likely to be non-integrable.
That is, even though the integrable PDE is the
compatibility condition of a linear operator pair,
one is not guaranteed to have a pair of linear
equations corresponding to a generic discretiza-
tion of the PDE. On the other hand, for the
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Figure 2. Discrete Akhmediev breather, periodic
in n and homoclinic in τ .

Figure 3. Discrete Kuznetsov-Ma solution, peri-
odic in τ and homoclinic in n.

differential-difference equation

i
d

dt
qn = (1)

1

h2
(qn+1 − 2qn + qn−1)∓ |qn|2(qn+1 + qn−1) ,

which is known in the literature as the Ablowitz-
Ladik (AL) equation, and which is a O(h2) finite-
difference approximation of NLS, there is such an
associated operator pair.

Besides being used as a basis for numerical
schemes for its continuous counterpart, the AL
equation has also numerous physical applications,
related to the dynamics of anharmonic lattices,
self-trapping on a dimer, Heisenberg spin chains,
etc.

In [3] we developed the IST for the focusing
Ablowitz-Ladik [Eq.(1) with the + sign in front of

Figure 4. Discrete Peregrine solution.

the nonlinear term] equation with nonzero bound-
ary conditions as n → ±∞. Both the direct and
the inverse problems were formulated in terms of
a suitable uniform variable; the inverse problem is
posed as a Riemann-Hilbert problem on a doubly-
connected curve in the complex plane, and solved
by properly accounting for the asymptotic depen-
dence of eigenfunctions and scattering data on the
Ablowitz-Ladik potential.

In [4] explicit soliton solutions are derived
which are the discrete analog of the Tajiri-
Watanabe and Kutznetsov-Ma solutions to the fo-
cusing NLS equation. Then, by performing suit-
able limits of the above solutions, discrete analog
of the celebrated Akhmediev and Peregrine solu-
tions were also obtained. These solutions, which
have been derived by means of the Hirota bilinear
method [6–8], are obtained here for the first time
within the framework of the IST, thus also pro-
viding a spectral characterization of the solutions
and a description of the singular limit process.
Discrete breathers have a variety of applications.
In particular, discrete rogue waves can be used as
spatial energy concentrators in arrays of nonlinear
waveguides [9]. As such, the results of this work
may find practical applications in this context, as
well as in all other physical settings where the AL
solutions provide a good approximation for their
continuous counterpart.
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