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On solitonic surfaces
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In a joint work [1] with A. M. Grundland
( CRM, Université de Montréal, Montréal and
Dept. Math. Université du Québec, Trois-
Rivières ) and D. Levi (Dip. Mat. Fisica
dell’Università Roma Tre, Sez. INFN di Roma
Tre) we enlightened the relationships among three
types of symmetries (gauge symmetries of the lin-
ear spectral problem, conformal transformations
of the spectral parameter and generalized sym-
metries) of the immersion formula of 2D-surfaces
associated integrable system. We proved that the
mentioned symmetries can be expressed uniquely
in terms of gauge transformations. We apply the
theoretical results to surfaces associated to the
nonlinear the sigma model.

The motivations of the work arises from the
long standing relationship among Integrable Sys-
tems and Surfaces Geometry (see e.g. [2–16]).
We say that a surface is integrable if its Gauss-
Mainardi-Codazzi equations are integrable, i.e. if
they can be represented as the compatibility con-
ditions for some (non-fake) Linear Spectral Prob-
lem (LSP). This property yielded many new re-
sults concerning the intrinsic geometric properties
of such surfaces and,their immersion functions.

The initial construction of surfaces related to
completely integrable models makes use of the
conformal invariance of the zero-curvature repre-
sentation of the system with respect to the spec-
tral parameter. Another approach is using gauge
symmetries of the LSP. Moreover, by using the
symmetries of the LSP associated to an integrable
system, Fokas and Gel’fand [9,10] constructed
families of soliton surfaces. Most recently, in a
series of papers [11–14], a reformulation and ex-
tension of the Fokas-Gel’fand immersion formula
has been performed through the formalism of gen-
eralized vector fields on jet spaces. This extension
has provided the necessary and sufficient condi-
tions for the existence of soliton surfaces in terms
of the symmetries of the LSP of an integrable
model.

Let us consider an integrable system in two in-
dependent variables x1, x2 and m dependent vari-
ables uk(x1, x2) written as integrability of the

LSP (α = 1, 2)

D2U1 −D1U2 + [U1, U2] = 0,
∂αΦ(x1, x2, λ)− Uα([u], λ)Φ(x1, x2, λ) = 0.

(1)

Simultaneous infinitesimal deformation of (1) are Ũ1

Ũ2

Φ̃

 =

 U1

U2

Φ

+ε

 A1

A2

Ψ

+O(ε2). (2)

They satisfy, at first order in ε, the equations

DαΨ = UαΨ +AαΦ,
D2A1 −D1A2 + [A1, U2] + [U1, A2] = 0.

(3)

Theorem 1. If the matrix functions Uα ∈ g,
Φ ∈ G of the LSP (1) and Aα ∈ g are linearly
independent satisfying (3), then there exists (up
to affine transformations) a 2D-surface with a g-
valued immersion function F ([u], λ) such that the
tangent vectors to this surface are given by

DαF ([u], λ) = Φ−1Aα([u], λ)Φ, (4)

Theorem 2. The linearly independent g-valued
matrix functions

Aα([u], λ) = β(λ)DλUα + (DαS + [S,Uα])
+ prωRUα + (prωR(DαΦ− UαΦ)) Φ−1,

(5)

where β(λ) is an arbitrary scalar function of
λ, S = S([u], λ) is an arbitrary g-valued ma-
trix function, ωR = Rk[u]∂uk is the evolutionary
form of the generalized symmetries of (1), then
there exists a 2D-surface with immersion func-
tion F : N → g given by

F ([u], λ) = Φ−1 (β(λ)DλΦ + SΦ + prωRΦ) . (6)

Special cases are : the ST immersion for-
mula (when S = 0, ωR = 0) FST ([u], λ) =
β(λ)Φ−1(DλΦ) ∈ g, the CD immersion for-
mula (when β = ωR = 0) FCD([u], λ) =
Φ−1S([u], λ)Φ ∈ g, and the FG immersion for-
mula (when β = 0, S = 0) FFG([u], λ) =



2

Φ−1(prωRΦ) ∈ g. In any case the (2.14) provides
the tangent vectors and the unit normal vector to
a 2D-surface

DαF = Φ−1AαΦ ∈ g, N =
Φ−1[A1, A2]Φ

( 1
2 tr[A1, A2]2)1/2

∈ g,

from which First and Second Fundamental forms
are computed and the expressions for the Mean
and Gaussian Curvatures are expressible in terms
of Uα and Aα only.

Theorem 3. λ-conformal symmetries and
gauge transformations A symmetry of (1) is
a λ-conformal symmetry if and only if there exists
a g-valued matrix function S1 = S1([u], λ) which
is a solution of the system of differential equations

DαS1 + [S1, Uα] = β(λ)DλUα. (7)

Then, if the gauge function S1([u], λ) is known,
by solving (7) we can determine the wavefunction
Φ and consequently obtain the ST immersion for-
mula for 2D-soliton surfaces. Therefore, the ST
formula for immersion is equivalent to the CD im-
mersion formula for the gauge S1, satisfying the
differential equation (7).

Theorem 4. Generalized symmetries and
gauge transformations A vector field ωR is
a generalized symmetry of (1) if and only if there
exists a g-valued matrix function (gauge) S2 =
S2([u], λ) which is a solution of the system of dif-
ferential equations.

DαS2+[S2, Uα] = prωRUα+(prωR(DαΦ− UαΦ)) Φ−1.

(8)

Comparing the above FG formula for immer-
sion with the CD immersion formula, we find that
the matrix function S2 = (prωRΦ)Φ−1 satisfies
(8) and, then, the FG formula is equivalent to
the CD immersion formula.

Theorem 5. The Sym-Tafel’s versus the
Fokas-Gel’fand immersion formula Suppose
that a generalized vector field written in the evolu-
tionary form ωR = Rk[u]∂uk is a symmetry of the
integrable PDE in (1) and that the g-valued ma-
trices S1 and S2 satisfy the differential conditions
(7) and (8), respectively. If the gauge S2 is non-
singular, then there exists a matrix M = S1S

−1
2

such that

β(λ)(DλΦ) = M(prωRΦ). (9)

Alternatively, if the gauge S1 is non-singular,
then there exists a matrix M−1 such that

(prωRΦ) = M−1β(λ)(DλΦ). (10)

Thus, also in this case we can find a mapping
between the ST and the FG formulae. We sum-
marise our result in the commutative diagram

Φ ∈ G
PPPPPPPPPPPq

��
��

��
��

��1S1 ∈ g

S2 ∈ g

FST = β(λ)Φ−1(DλΦ) ∈ g

FFG = Φ−1(prωRΦ) ∈ g

S1 ◦ S−1
2

6

?

S2 ◦ S−1
1

Figure 1. Representation of the relations between
the wavefunction Φ ∈ G and the g-valued ST and
FG formulas for immersions of 2D-soliton sur-
faces.
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