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Let A be an algebra with involution ∗ over a field F. We denote by A+ = {x ∈ A|x∗ = x} the set of
symmetric elements of A under ∗ and by A− = {x ∈ A|x∗ = −x} the set of skew-symmetric elements.
A general question of interest is to establish the extent to which the structure of A+ or A− determines
the structure of A (see [8]). For instance, a celebrated result of Amitsur in [1] states that if A+ or A−

satisfies a polynomial identity, then so does A. Moreover, a considerable amount of attention has been
devoted to decide if Lie properties satisfied by the symmetric or the skew symmetric elements of a group
algebra FG under the classical involution, induced from the map g 7→ g−1 on G, are also satisfied by
the whole algebra FG (see e.g. [6,10]). Furthermore, similar questions with respect to involutions of FG
obtained as a linear extension of a group involution of G have been considered, for instance, in [5,9,11].

Now, let L be a restricted Lie algebra over a field F of characteristic p > 2 and let u(L) be the
restricted enveloping algebra of L. We denote by > the principal involution of u(L), that is, the unique
F-antiautomorphism of u(L) such that x> = −x for every x in L. We recall that > is just the antipode
of the F-Hopf algebra u(L). In [14] and [16] the conditions under which u(L)− or u(L)+ are Lie solvable,
Lie nilpotent or bounded Lie Engel were provided. It turns out that u(L)− or u(L)+ are Lie solvable if
and only if so is u(L). The aim of this note is to characterize L when u(L)− or u(L)+ are Lie metabelian.
If S is a subset of L then we denote by S[p] the subspace spanned by the elements x[p], x ∈ S. Moreover,
we use the symbol L′ for the derived subalgebra of L. Our main result is the following:

Theorem 1. Let L be a restricted Lie algebra over a field F of characteristic p > 2. Then the following
statements hold:

1) u(L)− is Lie metabelian if and only if either L is abelian or p = 3, L′ is 1-dimensional and central,

and L′
[p]

= 0.

2) u(L)+ is Lie metabelian if and only if one of the following conditions is satisfied:

(i) L is abelian;

(ii) p = 3, L′ is 1-dimensional and central, and L′
[p]

= 0;

(iii) p = 3 and L is 2-dimensional.

Note that Lie metabelian restricted enveloping algebras have been characterized in [15]. By combining
this result and our main theorem, one concludes that in odd characteristic u(L)− is Lie metabelian if and
only if so is u(L). This remains true for the symmetric case provided that p > 3, but if L is a 2-dimensional
non-abelian restricted Lie algebra over a field of characteristic 3, then u(L)+ is Lie metabelian whereas
u(L) is not. It seems interesting that this is indeed the only exception. We also show that in characteristic
2 our main theorem fails both for skew and symmetric case. We finally mention that analogous results
for group algebras have been carried out in [3,4,12,13].
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