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Let V be a vector space over a field F . Clearly,
the group T (V ) of all the translations of V and
any of its coniugate subgroups by an element
of GL(V ) are abelian regular subgroups of the
affine group AGL(V ). It is well known that if
V is finite-dimensional, then any abelian regu-
lar subgroup of AGL(V ) intersects nontrivially
the group of translations. This does not nec-
essarily happen when V is infinite-dimensional,
as has been pointed out by Caranti, Dalla Volta
and Sala [2]. In [7], Hegedűs constructed inter-
esting examples of nonabelian regular subgroups
of some affine groups over a finite-dimensional
vector space containing no nontrivial translation.
The interest for these special subgroups origi-
nated from the seminal paper by Liebeck, Praeger
and Saxl [8]. Currently other examples of this
type can be found, for instance, in [2], [3], and
[13].
Caranti, Dalla Volta and Sala [2] obtained a sim-
ple description of the abelian regular subgroups
of the affine group AGL(V ) in terms of commu-
tative radical algebras with the underlying vector
space V . Afterwards a description of all regular
subgroups, not necessarily abelian, of an affine
group was obtained by Rizzo and the first au-
thor [4] in terms of radical braces over a field,
a generalization of radical algebras. These new
structures, introduced by Rump in [10], are very
closely related to non-degenerate involutive set-
theoretic solutions of the quantum Yang-Baxter
equation. Thus the open problem of determining
all regular subgroups of an affine group AGL(V ),
formulated in [9], may be replaced by that of de-
termining all radical braces with the underlying
vector space V .
The aim of this paper is to introduce the asym-
metric product of radical braces, a construction
which extends the semidirect product of radical
braces introduced in [11] and rewritten in [5].
This new construction allows to obtain rather sys-
tematic constructions of regular subgroups of the
affine group and, in particular, this approach al-
lows to put the regular subgroups constructed by
Hegedűs in [7] in a more general context.
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