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We present an ideal system of interacting
fermions where the solutions of the many-body
Schrödinger equation can be obtained without
making approximations. These exact solutions
are used to test the validity of two many-body
effective approaches, the Hartree-Fock (HF) and
the Random Phase Approximation (RPA) theo-
ries. The description of the ground state done
by the effective theories improves with increasing
number of particles.

In its original version [1], the Lipkin, Meshkov,
and Glick (LMG) model consists of N fermions
occupying two energy levels, each of them has an
N -fold degeneracy. We indicate with ε the energy
difference between these two levels. Each level
is characterised by a quantum number σ which
assume the value +1 in the upper level and −1 in
the lower one, and by a set p of quantum numbers
specifying the particular degenerate states within
the same level. Only two-body interactions which
scatter pairs of particles between the two levels
without changing the value of p are considered.
The hamiltonian of this model system is given by

H = εK0 −
V
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The green full lines of Fig. 1 and Fig. 2 show
ground state energy values, EGS , as function of
the interaction V for N = 2, 3, 4 (Fig. 1) and
N = 6, 8, 20 (Fig. 2). In the left panels we show
the solutions obtained when W = 0, and in the
right panels those for W = V . The results up
to N = 8 have been obtained by using the an-
alytical expressions shown in ref.[2], while those
for N = 20 by performing a numerical diagonal-
ization of the hamiltonian matrix with standard
techniques.

The HF method [3–5] is one of the most com-
monly used approaches to describe the ground
state of many-fermions systems. The basic HF
equations can be obtained in various manners,

we consider the HF approach in its variational
formulation. This leads to [2]

EHF = − N

2


ε+W (region I),
ε2 + (N − 1)2(V +W )2

2 (N − 1)(V +W )
+ W (II).

The values of the ground state HF energies as a
function of the interaction V are shown by the
dash-dotted lines of Fig. 1 and Fig. 2 by dotted
lines. For W = 0 we observe a remarkable dif-
ference with the exact solutions, especially in the
region I, where the HF energies are constant. In
the transition point between the two regions, at
ε = (N − 1)V , the value of the energy is − N

2 ε.
For W = V case, we observe a reasonable agree-
ment of the HF solutions with the exact ones,
even in the region I. In this case, at the transition
point between the two regions, which is located
at ε = 2(N − 1)V , the value of the HF energy is

− N (2N−1)
4 (N−1) ε. In the figures, the thick red points

indicates these values.
The second effective theory we consider is the

RPA, which was originally formulated to describe
the excitations of an electron gas induced by
plasma fluctuations [6], and in the following has
been widely applied to describe harmonic vibra-
tions of many-fermion systems from atoms to nu-
clei [7]. The main goal of the RPA theory is the
description of the excited states of the system,
but the theory is based on an ansatz about the
ground state which is more elaborated than that
used in HF. In ref. [2], we presented the basic
steps required by the RPA theory to obtain an
expression of the ground state energy,

E
RPA

= E
HF
− ω |Y |2 , (2)

where ω =
√
A2 − |B|2, |Y |2 = A−ω

2ω ,

A =


ε− (N − 1)W (region I, ),
3 (N − 1)2(V +W )2 − ε2

2 (N − 1)(V +W )
− (N − 1)W (II),
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Figure 1. Ground state energies as a function of the
interaction strength V for systems composed by N =
2, 3 and 4 particles. The full (green) lines indicate
the solutions obtained without approximations. The
dash-dotted (red) lines the results obtained with the
HF model, and the dashed (blue) lines those obtained
with the RPA approach. The left panels show the
results for W = 0, and the right panels those obtained
by setting W = V . The blue and red thick dots
emphasize the values of the HF and RPA energies in
the discontinuity line.

and

B =


− (N − 1)V (region I),

− ε2 + (N − 1)2(V +W )2

2 (N − 1)(V +W )
+ (N − 1)W (II).

The behaviour of the RPA ground state energies,
as a function of the strength V of the interaction
is shown in Figs. 1 and 2 by the blue dashed lines.
For W = 0, it is evident the improvement with
respect to the HF results, especially in the region
I. The value of the energy at the transition point
between the two regions is − N+1

2 ε. For W = V
the agreement between RPA and exact results in
the region I is excellent. In this case the value of

the energy in the transition point is − 4N2−1
4 (N−1) ε.

The behaviour of the solutions for W = V in the
region II is remarkable. In this region we find for
the RPA solution

B = − ε2

4 (N − 1)V
. (3)

For 4 (N − 1)V � ε we have that B → 0 and,
consequently, due to the fact that Y → 0, the
value RPA energy tends to that of the HF energy.

In this article, we tested the validity of the HF
and RPA theories in the description of the ground
state of the system. In both cases, the solutions
are characterised by two regions which depend on
the strength of the interaction between the par-
ticles. The transition between the two regions is
discontinuous. The discontinuity at the meeting
point (which seems to suggest some sort of phase
transition) is clearly an artefact of the effective
theories, since the exact results do not present
any discontinuity region.

W = VW = 0

N = 6

−3.0

−3.5

−4.0

−4.5

Eexact
ERPA

EHF

b

b

b

N = 6
b

b

b

E
G

S
/

ǫ
N = 8

−4.0

−4.5

−5.0

−5.5
b

b

b

N = 8
b

b

b

( N − 1) V/ ǫ

N = 20

−10.0

−10.5

−11.0

−11.5

0 0.5 1.0 1.5
b

b

b

N = 20

( N − 1) V/ ǫ

0 0.5 1.0 1.5 2.0
b

b

b

Figure 2. The same as in Fig. 1 for N = 6, 8 and 20.
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