
1

Nonlinear Schrödinger equations

B. Prinari 1 and F. Vitale 2

1Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Sezione INFN, Lecce - Italy
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1. Polarization interactions in multi-
component repulsive Bose-Einstein con-
densates

Since their first experimental realization, Bose-
Einstein condensates (BECs) have attracted con-
siderable attention, and they continue to be the
object of intense research. In particular, exper-
iments in multi-component BECs have demon-
strated a variety of dark-dark and dark-bright
solitons [1,2]. In our work [3,4] we have stud-
ied dark-bright soliton interactions in repulsive
3-component BECs, and showed that such inter-
actions result in non-trivial polarization shifts,
which are similar in spirit to those in focusing 2-
component nonlinear Schrödinger systems [5]. To
the best of our knowledge, this is the first time
that non-trivial soliton polarization interactions
have been reported in a defocusing system.

Repulsive, cigar-shaped single-component
BECs can be modeled by the defocusing non-
linear Schrödinger (NLS) equation. Similarly,
multi-component BECs are modeled by a vec-
tor NLS (VNLS) equation. (In particular, the
2-component case is referred to as the Manakov
system [5].) To model dark-bright soliton inter-
actions, one must consider non-zero boundary
conditions (NZBC). In our work, we have studied
the 3-component defocusing VNLS equation

iqt + qxx − 2(‖q‖2 − q2
o)q = 0, (1)

with q(x, t) = (q1, q2, q3)T and with the NZBC
limx→±∞ q(x, t) = q± = qo e

iθ± , with qo > 0
and θ± arbitrary real constants. The term pro-
portional to qo in Eq. (1) makes q± independent
of time, but can be removed by a simple gauge
transformation.

Equation (1) is a completely integrable sys-
tem, so its initial value problem can be solved by
means of an appropriate inverse scattering trans-
form (IST). In [4] we have formulated the IST
for the 3-component case, and in [3] we have em-
ployed the IST machinery of [4] to study the re-
sulting soliton interactions.

When only one quartet of discrete eigenvalues

is present, letting zo = vo + iηo = |zo| eiαo , with
|zo| < qo, one obtains a dark-bright soliton solu-
tion of the VNLS equation:

qj(x, t) = −ipo,j wo sinαo e
iΦn sechSo

for j = 1, 2 and

q3(x, t) = q+e
iϕo(cosαo − i sinαo tanhSo) ,

where Sn = ηn(x− 2vnt− xo), Φn = vnx− (v2
n −

η2
n)t, wn =

√
q2
o − |zn|2, ϕn = αn and the unit-

norm polarization vector for the bright compo-
nents is simply pn = (p1,n, p2,n)T = cn/‖cn‖.

Soliton interactions and polarization
shift.

When two quartets Z1 and Z2 of discrete eigen-
values are considered, the corresponding solution
of VNLS solution is a nonlinear superposition of
two dark-bright solitons A long-time asymptotic
analysis then shows that, along the direction of
Sn, as t → ±∞, the solution takes the form of a
1-soliton solution above, but with pn, xn and ϕn
replaced by p±n , x±n and ϕ±n , with all these quan-
tities obtained in terms of the soliton parameters
and norming constants. Such a solution is shown
in Fig. 1, where a non-trivial polarization shift is
evident for the bright components. Explicitly,
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Figure 1. A 2-soliton solution of the defocusing 3-component VNLS equation exhibiting a polarization
shift, obtained for qo = 1 with z1 = i/2 (stationary black soliton), z2 = (1 + i)/4 (moving gray soliton)
and norming vectors c1 = (1, 0)T and c2 = (1, 1 + i/2)T . Note how the bright component of soliton 1 is
initially aligned exclusively with q1, but acquires a component along q2 as a result of the interaction.
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Figure 2. The polarization shift |〈p+
1 ,p

−
1 〉| (left)

and output copolarization |〈p+
1 ,p

+
2 〉| (right) as a

function of the input copolarization |〈p−1 ,p
−
2 〉| for

different combinations of soliton parameters (see
[3] for parameter values).

with r = 1/[(z1 − z2)(q2
o − z1z2)],

where 〈a,b〉 = a†b and χ =
1/
[
1 + 4η1η2|r|2w2

1w
2
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−
2 〉|2

]1/2
.

The product |〈p+
1 ,p

−
1 〉| (quantifying the po-

larization shift) and the output copolarization
|〈p+

1 ,p
+
2 〉| are shown in Fig. 2 as a function of

the input copolarization |〈p−1 ,p
−
2 〉|. The soliton

polarizations change unless the soliton polariza-
tion vectors are either parallel or orthogonal to
each other. Note how the output copolarization
is always larger than the input one, even though
the interactions occur in a repulsive medium.

The multi-soliton solutions and the correspond-
ing polarization interactions we obtained are sta-
ble, therefore we expect the polarization shift to
be a robust phenomenon that can in principle be
verified experimentally.

2. IST for the focusing NLS equation with
a one-sided NZBC

In [6] we have studied the IST as a tool to solve
the initial-value problem for the focusing, scalar
NLS equation with one-sided non-zero boundary

value qr(t) ≡ Are
−2iA2

rt+iθr , Ar ≥ 0, 0 ≤ θr <
2π, as x→ +∞.

The direct problem has been shown to be
well-defined for NLS solutions q(x, t) such that
[q(x, t) − qr(t)ϑ(x)] ∈ L1,1(R) [here ϑ(x) denotes
the Heaviside function] with respect to x ∈ R for
all t ≥ 0, for which analyticity properties of eigen-
functions and scattering data are established.

The inverse scattering problem has been for-
mulated both via (left and right) Marchenko in-
tegral equations and as a Riemann-Hilbert prob-
lem on a single sheet of the scattering variables
λr =

√
k2 +A2

r, where k is the usual complex
scattering parameter in the IST.

The direct and inverse problems have also been
formulated in terms of a suitable uniformization
variable that maps the two-sheeted Riemann sur-
face for k into a single copy of the complex plane.
The time evolution of the scattering coefficients
has then been derived, showing that, unlike the
case of solutions with the same amplitude as
x → ±∞, in our case both reflection and trans-
mission coefficients have a nontrivial (although
explicit) time dependence.

Our results will be instrumental for the inves-
tigation of the long-time asymptotic behavior of
physically relevant NLS solutions with nontrivial
boundary conditions.
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