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1. Polarization interactions in multi-
component repulsive Bose-Einstein con-
densates

Since their first experimental realization, Bose-
Einstein condensates (BECs) have attracted con-
siderable attention, and they continue to be the
object of intense research. In particular, exper-
iments in multi-component BECs have demon-
strated a variety of dark-dark and dark-bright
solitons [1,2]. In our work [3,4] we have stud-
ied dark-bright soliton interactions in repulsive
3-component BECs, and showed that such inter-
actions result in non-trivial polarization shifts,
which are similar in spirit to those in focusing 2-
component nonlinear Schrédinger systems [5]. To
the best of our knowledge, this is the first time
that non-trivial soliton polarization interactions
have been reported in a defocusing system.

Repulsive,  cigar-shaped single-component
BECs can be modeled by the defocusing non-
linear Schrodinger (NLS) equation. Similarly,
multi-component BECs are modeled by a vec-
tor NLS (VNLS) equation. (In particular, the
2-component case is referred to as the Manakov
system [5].) To model dark-bright soliton inter-
actions, one must consider non-zero boundary
conditions (NZBC). In our work, we have studied
the 3-component defocusing VNLS equation

with q(z,t) = (q1,q2,¢3)T and with the NZBC
lim, y400 q(z,) = q+ = q,e*, with ¢, > 0
and 04 arbitrary real constants. The term pro-
portional to ¢, in Eq. (1) makes q+ independent
of time, but can be removed by a simple gauge
transformation.

Equation (1) is a completely integrable sys-
tem, so its initial value problem can be solved by
means of an appropriate inverse scattering trans-
form (IST). In [4] we have formulated the IST
for the 3-component case, and in [3] we have em-
ployed the IST machinery of [4] to study the re-
sulting soliton interactions.

When only one quartet of discrete eigenvalues

is present, letting z, = v, + i1, = |2,| €', with
|zo| < 4o, One obtains a dark-bright soliton solu-
tion of the VNLS equation:

gj(x,t) = —ip,,j Wosin a, e'®n sech S,

for j =1,2 and

q3(z,t) = qye'¥°(cos o, — isina, tanh S,)

where Sn = T]n(JU — QUnt - xo)a q)n = UnT — (UTQL -

n2)t, w, = /¢ — |2n|?, ¢n = an and the unit-
norm polarization vector for the bright compo-
nents is simply P, = (P1.n,P2.0)7 = n/||cnl|-

Soliton interactions and polarization
shift.

When two quartets Z; and Z5 of discrete eigen-
values are considered, the corresponding solution
of VNLS solution is a nonlinear superposition of
two dark-bright solitons A long-time asymptotic
analysis then shows that, along the direction of
Sn, as t — £o0o, the solution takes the form of a
1-soliton solution above, but with p,, =, and ¢,
replaced by p, 2 and ¢, with all these quan-
tities obtained in terms of the soliton parameters
and norming constants. Such a solution is shown
in Fig. 1, where a non-trivial polarization shift is
evident for the bright components. Explicitly,

pi = x [Py — 2ir*(2]/22) now3 (P1 . P53 ) P2 |
Py = x [Py — 2ir (22/z]) mwi (py.pP3) P ]



Figure 1. A 2-soliton solution of the defocusing 3-component VNLS equation exhibiting a polarization
shift, obtained for g, = 1 with z; = i/2 (stationary black soliton), zo = (1 4 7)/4 (moving gray soliton)
and norming vectors ¢; = (1,0)7 and ¢3 = (1,1 +i/2)”. Note how the bright component of soliton 1 is
initially aligned exclusively with ¢;, but acquires a component along ¢» as a result of the interaction.
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Figure 2. The polarization shift |(p],p; )| (left)
and output copolarization |(p],p3)| (right) as a
function of the input copolarization |(p7 , p5 )| for
different combinations of soliton parameters (see
[3] for parameter values).

with = 1/[(z1 - =)@ - z2)
where  (a,b) = alb  and x =
1/[1+ dmpelrPwiud [(py py ) 2]

The product |(p{,p;)| (quantifying the po-
larization shift) and the output copolarization
|(p{,py)| are shown in Fig. 2 as a function of
the input copolarization |(p;,p5)|- The soliton
polarizations change unless the soliton polariza-
tion vectors are either parallel or orthogonal to
each other. Note how the output copolarization
is always larger than the input one, even though
the interactions occur in a repulsive medium.

The multi-soliton solutions and the correspond-
ing polarization interactions we obtained are sta-
ble, therefore we expect the polarization shift to
be a robust phenomenon that can in principle be
verified experimentally.

2. IST for the focusing NLS equation with
a one-sided NZBC

In [6] we have studied the IST as a tool to solve
the initial-value problem for the focusing, scalar
NLS equation with one-sided non-zero boundary

value g, (t) = Ape2iATH0: A > 0,0 < 6, <
2w, as * — 4o00.

The direct problem has been shown to be
well-defined for NLS solutions ¢(z,t) such that
[q(z,t) — ¢-()9(x)] € LY1(R) [here ¥(z) denotes
the Heaviside function] with respect to z € R for
all ¢t > 0, for which analyticity properties of eigen-
functions and scattering data are established.

The inverse scattering problem has been for-
mulated both via (left and right) Marchenko in-
tegral equations and as a Riemann-Hilbert prob-
lem on a single sheet of the scattering variables
Ar = /k? + A2, where k is the usual complex
scattering parameter in the IST.

The direct and inverse problems have also been
formulated in terms of a suitable uniformization
variable that maps the two-sheeted Riemann sur-
face for k into a single copy of the complex plane.
The time evolution of the scattering coefficients
has then been derived, showing that, unlike the
case of solutions with the same amplitude as
x — Fo00, in our case both reflection and trans-
mission coefficients have a nontrivial (although
explicit) time dependence.

Our results will be instrumental for the inves-
tigation of the long-time asymptotic behavior of
physically relevant NLS solutions with nontrivial
boundary conditions.
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