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The aim of our research program is to make
full use of the theory of Lie groups to study the
solution space of discrete equations and in partic-
ular to solve difference equations (∆S), i.e., to
difference equations together with the lattice they
are written on. The program has two complemen-
tary aspects, an analytical and a numerical one.
The analytical aspect is to determine the maxi-
mal symmetry group of the ∆S, i.e., the group
of transformations that takes solutions into solu-
tions, and then to use it to obtain exact analytic
solutions, at least special ones, if possible general
ones. The ∆S to which the approach is applied
can come from the study of discrete physical,
chemical, biological or other systems, for which
symmetries play an important role. Among them
we mention phenomena in crystals, or in atomic
or molecular chains.

On the other hand ∆S at the scale of the Planck
length space-time may very well be discrete. In
this case continuous field equations are approxi-
mations (continuous limits) of discrete ones. But
from the physical point of view very important
continuous symmetries should emerge/ be pre-
served, e.g., when studying quantum field theo-
ries on lattices or a fundamental discrete support.

One way to study such a relationship is to pre-
serve symmetries in a discretization of continu-
ous equations, by using symmetry adapted lat-
tices that themselves transform under the group
action. This greatly enlarges the set of equations
for which symmetry preserving discretization is
possible. We will however see that in some cases
only a subgroup of the Lie point symmetry group
can be preserved as point symmetries.

The numerical aspect of our program is the fol-
lowing. When solving an ODE or PDE numeri-
cally it is always necessary to replace the continu-
ous equation by a difference system. This can be
done in a standard manner, applicable to all equa-
tions, simply by replacing derivatives by discrete
derivatives. The other possibility takes us di-
rectly into the field of geometric integration. The
idea is to focus on some important feature of the

underlying problem and to preserve it in the dis-
cretization. Such a feature may be, for instance
linearizability, hamiltonian structure, integrabil-
ity in the sense of the existence of a Lax pairs and
generalized symmetries or point and contact sym-
metries. We are concentrating on point symme-
tries and exploring the possibility and usefulness
of including them in numerical calculations.

Earlier work has shown that for first-order
ODEs preserving a one-dimensional symmetry
group provides an exact discretization . For
second-order ODEs preserving a 3-dimensional
symmetry group often provides analytically solv-
able schemes .For third- and higher-order ODEs
symmetry preserving discretization provides nu-
merical solutions that are, usually, closer to exact
ones then those obtained by other methods, spe-
cially near to the singularities Quite few has be
done for previous work on PDEs

Several recent articles were devoted to dis-
cretizations of the Liouville equation [4]

zxy = ez, (1)

or its algebraic version

uuxy − uxuy = u3, u = ez. (2)

The Liouville equation is of interest for many
reasons. In differential geometry it is the equa-
tion satisfied by the conformal factor z(x, y) of the
metric ds2 = z2(dx2 + dy2) of a two-dimensional
space of constant curvature. Then from phys-
ical point ov view is a prototype of conformal
low-dimensional gravity model. In the theory
of infinite-dimensional nonlinear integrable sys-
tems it is the prototype of a nonlinear par-
tial differential equation (PDE) linearizable by a
transformation of variables, involving the depen-
dent variables (and their first derivatives) alone

u = 2
φxφy
φ2

, φxy = 0. (3)

In Lie theory this is probably the simplest PDE
that has an infinite-dimensional Lie point symme-
try group.The symmetry algebra of the algebraic
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Liouville equationis given by the vector fields

X(f(x)) = f(x)∂x − fx(x)u∂u, (4)

Y (g(y)) = g(y)∂y − gy(y)u∂u, (5)

where f(x) and g(y) are arbitrary smooth func-
tions.

Equation (4) is a standard realization of the
direct product of two centerless Virasoro al-
gebras and we shall denote the corresponding
Lie group VIR(x) ⊗ VIR(y). Restricting f(x)
and g(y) to second-order polynomials we ob-
tain the maximal finite-dimensional subalge-
bra slx(2,R)

⊕
sly(2,R) and the corresponding

finite-dimensional subgroup SLx(2,R)⊗SLy(2,R)
of the symmetry group.

The Liouville equation is also an excellent tool
for testing numerical methods for solving PDE’s,
since equationprovides a very large class of exact
analytic solutions, obtained by putting

φ(x, y) = φ1(x) + φ2(y), (6)

where φ1(x) and φ2(x) are arbitrary C(2)(I) func-
tions on some interval I.

In [1] Adler and Startsev presented a discrete
Liouville equation that preserves the property of
being linearizable and exactly solvable. In [2]
Rebelo and Valiquette wrote a discrete Liouville
equation that has the same infinite-dimensional
VIR(x) ⊗ VIR(y) symmetry group as the con-
tinuous Liouville equation. The transformations
are however generalized symmetries, rather than
point ones. In our article [3] we presented a dis-
cretization on a four-point stencil that preserves
the maximal finite-dimensional subgroup of the
VIR(x) ⊗ VIR(y) group as point symmetries. It
was also shown that it is not possible to con-
serve the entire infinite-dimensional Lie group
of the Liouville equation as point symmetries.
In [3] we also compared numerical solutions ob-
tained using standard (non invariant) discretiza-
tions, the Rebelo–Valiquette invariant discretiza-
tion [2] and our discretization with exact solutions
(for 3 different specific solutions). It turned out
that the discretization based on preserving the
maximal subgroup of point transformations al-
ways gave the most accurate results for the con-
sidered solutions (all of them strictly positive in
the area of integration).

In [4] we explore and compare the different dis-
cretizations of the Liouville equation from two
points of view. One is a theoretical one, namely
to investigate the degree to which different dis-
cretizations preserve the qualitative feature of the
equation: its exact linearizability, its infinite-
dimensional Lie point symmetry algebra, the be-
havior of the zeroes of the solutions. The other

point of view is that of geometric integration:
what are the advantages and disadvantages of the
different discretizations as tools for obtaining nu-
merical solutions.

In particular we reproduce our previous [3]
SLx(2,R) ⊗ SLy(2,R) symmetry preserving dis-
cretization using a 4-point stencil and show that
after a slight modification it can reproduce solu-
tions that have horizontal or vertical lines of ze-
roes (or both). Then, we propose an alternative
discretization, using a 9-point stencil, instead of
the 4-point one. It approximates the continuous
Liouville equation with ε2 precision, as opposed
to the ε precision of the 4-point discretization.
We show that increasing the number of points
does not allow us to preserve the entire infinite-
dimensional symmetry algebra, nor to treat the
lines of zeroes of solutions in a satisfactory man-
ner. Further we take a specific exact solution
of the continuous algebraic Liouville equation (2)
and approximate it on a 9-point lattice by a nu-
merical solution. The Adler–Startsev discretiza-
tion is written in a form suitable for numerical cal-
culations and we proved that it possess a different
class of generalized symmetries. We did several
numerical tests of the invariant 4-point scheme.
Five different exact solution of the algebraic Li-
ouville equation are presented and then used to
calculate boundary conditions on two lines paral-
lel to the x and y coordinate axes, respectively.
The solutions are then calculated numerically us-
ing four different discretizations. We compare the
validity of the different methods and their quali-
tative features.
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