Elliptic operators with second order discontinuous coefficients

G.Metafune ^a, M. Sobajima ^b, C.Spina ^a

^aDipartimento di Matematica e Fisica, Università del Salento, Italy

^bTokyo University of Science

We considered the operator

$$L = \Delta + (a-1)\sum_{i,j=1}^{N} \frac{x_i x_j}{|x|^2} D_{ij} + c \frac{x}{|x|^2} \cdot \nabla - b|x|^{-2},$$

under the condition a > 0, which is equivalent to the ellipticity of the principal part, and with $b, c \in \mathbb{R}$. The operator L with b = c = 0 has been originally considered to provide counterexamples to elliptic regularity, see [15], [5]. A priori estimates and elliptic solvability when $a \ge 1$, b = c = 0 have been successively investigated in [6], [7] in bounded domains and the spectrum has been computed in dimension 2 in [8].

In [11] we gave necessary and sufficient conditions for the validity of Rellich and Calderón-Zygmund inequalities in L^p . Rellich inequalities for the Laplacian in L^2 spaces (according to our notations a = 1, b = c = 0)

$$\left(\frac{N(N-4)}{4}\right)^2 \int_{\mathbb{R}^N} |x|^{-4} |u|^2 \, dx \le \int_{\mathbb{R}^N} |\Delta u|^2 \, dx,$$

for $N \neq 2$ and for every $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})$, have been proved by Rellich in 1956 and then extended to L^p -norms for 1 in [14].

Rellich inequalities with respect to the weight $|x|^{\alpha}$ have been also studied in [3] and [13]. We refer to [4] and [2] for necessary and sufficient conditions in L^2 and to [10] for a general treatment in L^p , valid also for the operators

$$\Delta + c \frac{x}{|x|^2} \cdot \nabla - \frac{b}{|x|^2}.$$

Rellich and Calderón-Zygmund inequalities for the operator L without lower order terms and under the assumption $a \ge 1$ have been proved in [7]. Sharp results concerning Calderón-Zygmund estimates have been obtained in the unit ball of \mathbb{R}^N . Some of these estimates have been proved also in the whole space but under suitable restrictions.

We used the same approach of [10] to rewrite Rellich inequalities for L as spectral inequalities for the operator $L(|x|^2 \cdot)$ which are easier to treat, since the radial and the angular part commute. Then we used Rellich inequalities to extend the Calderón-Zygmund estimates for the Laplacian to L; we obtained necessary and sufficient conditions for the validity of the estimate

$$\int_{\mathbb{R}^N} |D^2 u|^p \, dx \le C \int_{\mathbb{R}^N} |L u|^p \, dx$$

where $u \in W^{2,p}(\mathbb{R}^N)$, 1 . We point out that we treated the general case <math>a > 0 without assuming $a \ge 1$ as in [6], [7] and [8].

In [12], we proved generation results and domain characterization. To state them and explain how they are proved we introduce some notation. If $1 , we define the maximal operator <math>L_{p,max}$ through the domain

$$D(L_{p,max}) = \{ u \in L^p(\mathbb{R}^N) \cap W^{2,p}_{loc}(\mathbb{R}^N \setminus \{0\}) : Lu \in L^p(\mathbb{R}^N) \}$$

and note that, by local elliptic regularity, L_{max} is closed and

$$D(L_{p,max}) = \{ u \in L^p(\mathbb{R}^N) : Lu \in L^p(\mathbb{R}^N) \text{ as a distribution in } \mathbb{R}^N \setminus \{0\} \}$$

The operator $L_{p,min}$ is defined as the closure, in $L^p(\mathbb{R}^N)$ of $(L, C_c^{\infty}(\mathbb{R}^N \setminus \{0\}))$ (the closure exists since this operator is contained in the closed operator $L_{p,max}$) and it is clear that $L_{p,min} \subset L_{p,max}$.

The equation Lu = 0 has radial solutions $|x|^{-s_1}$, $|x|^{-s_2}$ where s_1, s_2 are the roots of the indicial equation $f(s) = -as^2 + (N - 1 + c - a)s + b = 0$ given by

$$s_1 := \frac{N - 1 + c - a}{2a} - \sqrt{D}, \quad s_2 := \frac{N - 1 + c - a}{2a} + \sqrt{D} \tag{1}$$

where

$$D := \frac{b}{a} + \left(\frac{N-1+c-a}{2a}\right)^2.$$
(2)

The above numbers are real if and only if $D \ge 0$. When D < 0 the equation u - Lu = f cannot have positive distributional solutions for certain positive f. This constitutes a generalization of a famous result due to Baras and Goldstein [1] in the case of the Schrödinger operator with inverse square potential, where the above condition reads $b + (N-2)^2/4 \ge 0$. We point out, however, that even when $b + (N-2)^2/4$ is negative there are realizations of the operator L in $L^2(\mathbb{R}^N)$ which generate analytic semigroups. Such semigroups are not positive and these realizations are necessarily non self-adjoint, see [9].

Assuming $D \ge 0$ we showed that there exists and intermediate operator $L_{p,min} \subset L_{p,int} \subset L_{p,max}$ which generates a (analytic) semigroup in $L^p(\mathbb{R}^N)$ if and only if $\frac{N}{p} \in (s_1, s_2 + 2)$. An intuitive explanation (for D > 0) of this result is the following. If $u(x) = \sum u_j(r)P_j(\omega)$ and $f = \sum f_j(r)P_j(\omega)$ where (P_j) are spherical harmonics, then the equation $\omega^2 u - Lu = f$, Re $\omega > 0$ can be reduced to the infinite system ODE of Bessel type

$$\omega^2 u_j(r) - \left(u_j''(r) + \frac{N-1+c}{r} u_j'(r) - (b+\lambda_n) \frac{u_j(r)}{r^2} \right) = f_j(r)$$
(3)

where n is the degree of P_j and $\lambda_n = n^2 + (N-2)n$ are the eigenvalues of the Laplace-Beltrami operator on the sphere S^{N-1} . Each of the above equation has characteristic numbers $s_1^{(n)}, s_2^{(n)}$, defined as in (1), (2) with $b + \lambda_n$ instead of b. The numbers $s_1^{(n)}$ decrease to $-\infty$, whereas $s_2^{(n)}$ increase to $+\infty$. The equations (3) have more regularizing effect as n increases, since the potentials $(-b + \lambda_n)r^{-2}$ become more and more negative and therefore the most critical equation appears for n = 0 and corresponds to radial functions. For positive ω , (3) with n = 0 and $f_0 = 0$ has two linearly independent solutions $v_{\omega,1}, v_{\omega,2}$ with the following properties: $v_{\omega,1}$ is exponentially increasing at ∞ and behaves like r^{-s_1} as $r \to 0, v_{\omega,2}$ is exponentially decreasing at ∞ and behaves like r^{-s_2} as $r \to 0$. Using these function one can construct a Green function as for Sturm-Liouville problems. However, if $N/p \leq s_1$, then neither $v_{\omega,1}$ or $v_{\omega,2}$ belong to $L^p((0,1), r^{N-1} dr)$ and equation (3) with n = 0 cannot be solved for suitable f_0 . If $N/p \geq s_2 + 2$, the function $v_{\omega,2}$ belongs to the domain of the minimal operator $L_{p,min}$ and is therefore an eigenfunction of any of its extensions. These facts explain the negative part of our result.

If $N/p \in (s_1, s_2)$, then $v_{\omega,1}$ is the only solution of the homogeneous equation which is in L^p near 0 and $v_{\omega,2}$ is the only solution of the homogeneous equation which is in L^p near ∞ (in both cases with respect to the measure $r^{N-1} dr$). This means that there is only one way to construct a resolvent and hence $L_{p,max}$ is a generator. By duality, $L_{p,min}$ is a generator when $N/p \in (s_1 + 2, s_2 + 2)$. Therefore $L_{p,int} = L_{p,max}$ if $N/p \in (s_1, s_2]$ and $L_{p,int} = L_{p,min}$ if $N/p \in [s_1 + 2, s_2 + 2)$ and $L_{p,int}$ is the unique realization of L between $L_{p,min}$ and $L_{p,max}$ which generates a semigroup, when these two intervals overlap, that is when $s_1 + 2 \leq s_2$, since it coincides either with $L_{p,min}$ or with $L_{p,max}$ (and with both when $N/p \in [s_1 + 2, s_2]$). However, if $s_2 < s_1 + 2$ and N/p is in between, that is when

$$\frac{b}{a} + \left(\frac{N-1+c-a}{2a}\right)^2 \in [0,1) \text{ and } \frac{N}{p} \in (s_2, s_1+2),$$

both functions $v_{\omega,1}, v_{\omega,2}$ are in $L^p((0,1), r^{N-1} dr)$ and there is no uniqueness even among the generators of positive and analytic semigroups, see [12]. The choice of the domain of $L_{p,int}$ is made to preserve the coherence of the semigroup in the L^q -scale, by extrapolating the semigroup from those $L^q(\mathbb{R}^N)$ for which there is uniqueness; namely we select $v_{\omega,1}$ to construct the Green function near 0 but other choices are possible.

The above arguments can be made rigorous in L^2 by expansion in spherical harmonics, but not directly in L^p . Instead we use a global argument based on improved Hardy and Poincaré inequalities which yield complex dissipativity on subspaces of $L^p(\mathbb{R}^N)$ generated by high order spherical harmonics and then we perform a one dimensional analysis on a finite number of cases.

REFERENCES

- 1. P. Baras, J.A. Goldstein: The heat equation with a singular potential, Trans. Amer. Math. Soc.284(1984), 121–139.
- P. Caldiroli, R. Musina: Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), no. 1-2, 147-164.
- 3. E. B. Davies, A. M. Hinz: Explicit constants for Rellich inequalities in $L^p(\Omega)$, Math. Z.227(1998), 511–523.
- N. Ghoussoub, A. Moradifam: Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1–57.
- 5. A. Ladyzhenskaya, O. Ural'tseva: Linear and Quasilinear Elliptic Equations, Academic Press, New York and London, (1968).
- P. Manselli: Su un operatore ellittico a coefficienti discontinui, Ann. Mat. Pura Appl. (4) 95 (1973), 269-284.
- P. Manselli: Maggiorazioni a priori e teoremi di esistenza ed unicità per un operatore ellittico a coefficienti discontinui, Le Matematiche 27 (1972), 251-300.
- P. Manselli, F. Ragnedda:Spectral Analysis for a discontinuous second order elliptic operatorLe Matematiche58(2003), 67-93.
- 9. G. Metafune, M. Sobajima: Spectral properties of non-selfadjoint extensions of Calogero Hamiltonian, Funkcial. Ekvac., to appear.
- G. Metafune, M. Sobajima, C. Spina: Weighted Calderón-Zygmund and Rellich inequalities in L^p, Mathematische Annalen (361),1-2(2015), 313-366.
- 11. G. Metafune, M: Sobajima, C. Spina: Rellich and Calderón-Zygmund inequalities for elliptic operators with discontinuous coefficients, Ann. Mat. Pura Appl. (4) to appear.
- 12. G. Metafune, M: Sobajima, C. Spina: An elliptic operator with second order discontinuous coefficients, submitted.
- 13. E. Mitidieri: A simple approach to Hardy inequalities, Mathematical Notes, 67 N. 4 (2000), 479-486.
- N. Okazawa: L^p-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math., 22(1996), 199-239.
- 15. N.N. Ural'tseva: Impossibility of $W^{2,p}$ bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I.5(1967), pp. 250-254.