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Components of V (ρ)⊗ V (ρ)
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Let g be any simple Lie algebra over C. We
fix a Borel subalgebra b and a Cartan subalge-
bra t ⊂ b and let ρ be the half sum of positive
roots, where the roots of b are called the positive
roots. For any dominant integral weight λ ∈ t∗,
let V (λ) be the corresponding irreducible repre-
sentation of g. B. Kostant initiated (and popu-
larized) the study of the irreducible components
of the tensor product V (ρ) ⊗ V (ρ). In fact, he
conjectured the following.

Conjecture 1. (Kostant) Let λ be a dominant
integral weight. Then, V (λ) is a component of
V (ρ)⊗V (ρ) if and only if λ ≤ 2ρ under the usual
Bruhat-Chevalley order on the set of weights.

It is, of course, clear that if V (λ) is a compo-
nent of V (ρ)⊗ V (ρ), then λ ≤ 2ρ.

One of the main motivations behind Kostant’s
conjecture was his result that the exterior algebra
∧g, as a g-module under the adjoint action, is iso-
morphic with 2r copies of V (ρ)⊗V (ρ), where r is
the rank of g (cf. [9]). Recall that ∧g is the under-
lying space of the standard chain complex com-
puting the homology of the Lie algebra g, which
is, of course, an object of immense interest.

Definition. An integer d ≥ 1 is called a satura-
tion factor for g, if for any (λ, µ, ν) ∈ D3 such
that λ+µ+ ν is in the root lattice and the space
of g-invariants:

[V (Nλ)⊗ V (Nµ)⊗ V (Nν)]g 6= 0

for some integer N > 0, then

[V (dλ)⊗ V (dµ)⊗ V (dν)]g 6= 0,

where D ⊂ t∗ is the set of dominant integral
weights of g. Such a d always exists (cf. [10];
Corollary 44]).

Recall that 1 is a saturation factor for g = sln,
as proved by Knutson-Tao [8]. By results of
Belkale-Kumar [2] (also obtained by Sam [11] and
Hong-Shen [5]), d can be taken to be 2 for g of
types Br, Cr and d can be taken to be 4 for g of
type Dr by a result of Sam [11]. As proved by
Kapovich-Millson [6], [7], the saturation factors d
of g of types G2, F4, E6, E7, E8 can be taken to
be 2 (in fact any d ≥ 2), 144, 36, 144, 3600 respec-
tively. (For a discussion of saturation factors d,
see [10], §10.)

Now, the following result (weaker than Conjec-
ture 1) is our main theorem.

Theorem. Let λ be a dominant integral weight
such that λ ≤ 2ρ. Then, V (dλ) ⊂ V (dρ)⊗V (dρ),
where d ≥ 1 is any saturation factor for g. In
particular, for g = sln, V (λ) ⊂ V (ρ)⊗ V (ρ).

The proof uses a description of the eigen-
cone of g in terms of certain inequalities due
to Berenstein-Sjamaar coming from the cohomol-
ogy of the flag varieties associated to g, a ‘non-
negativity’ result due to Belkale-Kumar and the
following Proposition.
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Proposition. Let λ ≤ 2ρ be a dominant integral
weight. Then,

λ = ρ+ β,

for some weight β of V (ρ).

An interesting aspect of our work is that we
make an essential use of a solution of the eigen-
value problem and saturation results for any g.

Remark. As informed by Papi, Berenstein-
Zelevinsky had proved Conjecture 1 (by a differ-
ent method) for g = sln (cf. [4], Theorem 6).
They also determine in this case when V (λ) ap-
pears in V (ρ) ⊗ V (ρ) with multiplicity one. To
our knowledge, Conjecture 1 appears first time in
this paper.
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