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Let g be any simple Lie algebra over C. We
fix a Borel subalgebra b and a Cartan subalge-
bra t C b and let p be the half sum of positive
roots, where the roots of b are called the positive
roots. For any dominant integral weight A € t*,
let V(A\) be the corresponding irreducible repre-
sentation of g. B. Kostant initiated (and popu-
larized) the study of the irreducible components
of the tensor product V(p) ® V(p). In fact, he
conjectured the following.

Conjecture 1. (Kostant) Let A be a dominant
integral weight. Then, V(\) is a component of
V(p)@V(p) if and only if X < 2p under the usual
Bruhat-Chevalley order on the set of weights.

It is, of course, clear that if V' ()\) is a compo-
nent of V(p) ® V(p), then A < 2p.

One of the main motivations behind Kostant’s
conjecture was his result that the exterior algebra
Ag, as a g-module under the adjoint action, is iso-
morphic with 2" copies of V(p) @ V(p), where r is
the rank of g (cf. [9]). Recall that Ag is the under-
lying space of the standard chain complex com-
puting the homology of the Lie algebra g, which
is, of course, an object of immense interest.

Definition. An integer d > 1 is called a satura-
tion factor for g, if for any (\,u,v) € D?® such
that A+ p+ v is in the root lattice and the space
of g-invariants:

[V(NA) @ V(N ® V(NV)® £ 0

i

for some integer N > 0, then
[V(d\) @ V(du) @ V(dv)]® # 0,

where D C t* is the set of dominant integral
weights of g. Such a d always exists (cf. [10];
Corollary 44]).

Recall that 1 is a saturation factor for g = si,,
as proved by Knutson-Tao [8]. By results of
Belkale-Kumar [2] (also obtained by Sam [11] and
Hong-Shen [5]), d can be taken to be 2 for g of
types B,.,C, and d can be taken to be 4 for g of
type D, by a result of Sam [11]. As proved by
Kapovich-Millson [6], [7], the saturation factors d
of g of types Ga, Fy, Fg, F7, Eg can be taken to
be 2 (in fact any d > 2), 144, 36, 144, 3600 respec-
tively. (For a discussion of saturation factors d,
see [10], §10.)

Now, the following result (weaker than Conjec-
ture 1) is our main theorem.

Theorem. Let A be a dominant integral weight
such that X\ < 2p. Then, V(d\) C V(dp) @V (dp),
where d > 1 is any saturation factor for g. In
particular, for g = sl,, V(A\) C V(p) @ V(p).

The proof uses a description of the eigen-
cone of g in terms of certain inequalities due
to Berenstein-Sjamaar coming from the cohomol-
ogy of the flag varieties associated to g, a ‘non-
negativity’ result due to Belkale-Kumar and the
following Proposition.



Proposition. Let A < 2p be a dominant integral
weight. Then,

A=p+B,
for some weight 8 of V(p).

An interesting aspect of our work is that we
make an essential use of a solution of the eigen-
value problem and saturation results for any g.

Remark. As informed by Papi, Berenstein-
Zelevinsky had proved Conjecture 1 (by a differ-
ent method) for g = sl, (cf. [4], Theorem 6).
They also determine in this case when V' (\) ap-
pears in V(p) ® V(p) with multiplicity one. To
our knowledge, Conjecture 1 appears first time in
this paper.
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