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Let G be a complex connected semisimple al-
gebraic group, and let K be the fixed point sub-
group of an algebraic involution θ of G. Recall
that K is reductive. It is connected if G is simply-
connected.

The Lie algebra g of G splits into the sum of
eigenspaces of θ,

g = k⊕ p,

where the Lie algebra k of K is the eigenspace of
eigenvalue 1, and p is the eigenspace of eigenvalue
−1. The adjoint action of G on g, once restricted
to K, leaves k and p stable.

Therefore, p is an interesting K-module, where
one may want to study the geometry of the K-
orbits. With this aim, one looks at the so-called
nilpotent cone Np ⊂ p, which consists of the ele-
ments whose K-orbit closure contains the origin.
In this case, Np actually consists of the nilpotent
elements of g which belong to p. By a fundamen-
tal result of Kostant and Rallis [22], as in the case
of the adjoint action of G on g, there are finitely
many nilpotent K-orbits in p.

Provided K is connected, we restrict our at-
tention to the spherical nilpotent K-orbits in p.
Here spherical means with an open orbit for a
Borel subgroup of K, or equivalently with a ring
of regular functions which affords a multiplicity-
free representation of K. The classification of
these orbits is known and due to King [20].

To study these orbits we make use of the tech-
nical machinery of spherical varieties. Given a
spherical nilpotent K-orbit O ⊂ p, we obtain
complete information on the normality (or non-
normality) of its closure O, and on the K-module
structure of the ring of regular functions of its
normalization Õ (which is encoded in the weight

semigroup Γ(Õ)).
In the present paper we assume that: (1) G is

of classical type and (2) θ is of non-exceptional
type. The other cases will be treated separately.
The latter condition is equivalent to ask that K
is semisimple, in this case the symmetric space
G/K is also called of non-Hermitian type, and p
is a simple K-module.

Let GR be a real form of G with Lie alge-
bra gR and Cartan decomposition gR = kR + pR,
so that θ is induced by the corresponding Car-
tan involution of GR. Then K is the complex-
ification of a maximal compact subgroup KR ⊂
GR, and the Kostant-Sekiguchi-Doković corre-
spondence [15,31] establishes a bijection between
the set of the nilpotent GR-orbits in gR and the
set of the nilpotent K-orbits in p. Let us briefly
recall how it works, more details and references
can be found in [13].

Every non-zero nilpotent element e ∈ gR lies
in an sl(2)-triple {h, e, f} ⊂ gR. Every sl(2)-
triple {h, e, f} ⊂ gR is conjugate to a Cayley
triple {h′, e′, f ′} ⊂ gR, that is, an sl(2)-triple with
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θ(h′) = −h′, θ(e′) = −f ′ and θ(f ′) = −e′. To a
Cayley triple in gR one can associate its Cayley
transform

{h, e, f} 7→ {i(e−f), 12 (e+f+ih), 12 (e+f−ih)} :

this is a normal triple in g, that is, an sl(2)-triple
{h′, e′, f ′} with h′ ∈ k and e′, f ′ ∈ p. By [22],
any non-zero nilpotent element e ∈ p lies in a
normal triple {h, e, f} ⊂ g, and any two normal
triples with the same nilpositive element e are
conjugated under K. Then the desired bijective
correspondence is constructed as follows: take an
adjoint nilpotent orbit O ⊂ gR, choose an ele-
ment e ∈ O lying in a Cayley triple and take a
Cayley triple {h, e, f} containing it, take its Cay-
ley transform {h′, e′, f ′} and take the nilpotent
orbit Ke′ ⊂ p.

Among the nice geometrical properties of the
Kostant-Sekiguchi-Doković correspondence, we
just recall here one result concerning sphericality:
the spherical nilpotent K-orbits in p correspond
to the adjoint nilpotent GR-orbits in gR which are
multiplicity free as Hamiltonian KR-spaces [19].

In accordance with the philosophy of the orbit
method (see e.g. [1]), the unitary representations
of GR should be parametrized by the (co-)adjoint
orbits of GR. In particular one is interested in the
so-called unipotent representations of GR, namely
those which should be attached to nilpotent or-
bits. The K-module structure of the ring of reg-
ular functions on a nilpotent K-orbit in p (which
we compute in our spherical case) should give
information on the corresponding unitary repre-
sentation of GR. Unitary representantions that
should be attached to the spherical nilpotent K-
orbits are studied in [18] (when G is a classical
group), [30] (when G is the special linear group)
and [32] (when G is the symplectic group).

The normality and the K-module structure of
the coordinate ring of the closure of a spherical
nilpotent K-orbit in p have been studied in sev-
eral particular cases, with different methods, by
Nishiyama [25], [26], by Nishiyama, Ochiai and
Zhu [27], and by Binegar [2].

In Appendix A of the present paper we re-
port the list of the spherical nilpotent K-orbits
in p for all symmetric pairs (g, k) of classical non-
Hermitian type.

In the classical cases, the adjoint nilpotent or-
bits in real simple algebras are classified in terms
of signed partitions, as explained in [13, Chap-
ter 9]. In the list, every orbit is labelled with its
corresponding signed partition.

For every orbit we provide an explicit descrip-
tion of a representative e ∈ p, as element of a
normal triple {h, e, f}, and the centralizer of e,
which we denote by Ke. All these data can be

directly computed using [20] (but we point out a
missing case therein).

The first datum which is somewhat new in this
work is the Luna spherical system associated with
NK(Ke), the normalizer of Ke in K, which is a
wonderful subgroup of K. It is equal to K[e], the
stabilizer of the line through e, and notice that
K[e]/Ke

∼= C×.
The Luna spherical systems are used to deduce

the normality or non-normality of the K-orbits,
and to compute the K-modules of regular func-
tions.

Appendix B of the present paper consists of two
sets of tables. The first set contains our results on
the normality of the spherical nilpotent K-orbits
in p and on the K-module structure of their rings
of regular functions. The second set contains the
Luna spherical systems.
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