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The isometry group for the Hamming distance
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Let X be a non-void set, let V
.
= Xn and

denote by d : V × V −→ N the Hamming dis-
tance (see [1] and, in general, [2]). For u =
(x1, x2, . . . , xn), v = (y1, y2, . . . , yn) in V , this is
defined as

d(u, v) = |{1 ≤ i ≤ n |xi 6= yi}|

So d(u, v) is the number of different coordinates
in u and v. A bijective map f : V −→ V is an
isometry if d(f(u), f(v)) = d(u, v) for all pairs
u, v ∈ V . It is clear that the set O(V ) of isome-
tries is a group; the aim of this short note is the
description of the structure of such group. This
is probably well known in literature.

We denote by Sn the group of permuta-
tions on n elements and by S(X) the group
of permutations of the set X. Notice that Sn
acts by automorphisms on the group S(X)n:
σ ∈ Sn maps (τ1, τ2, . . . , τn) to στ

.
=

(τσ−1(1), τσ−1(2), . . . , τσ−1(n)).
For any τ = (τ1, τ2, . . . , τn) ∈ S(X)n and

σ ∈ Sn we may define an isometry fτ,σ
of V by mapping v ∈ V to fτ,σ(v)

.
=

(τ1xσ−1(1), τ2xσ−1(2), . . . , τnxσ−1(n)).
Moreover these isometries are all the isometries

of V with respect to the Hamming distance.

Theorem. The map S(X)N o Sn 3 (τ, σ) 7−→
fτ,σ ∈ O(V ) is a group isomorphism.

In the particolar case of X a field we have at
once

Corollary. Suppose that X = F is a field, so that
V is an n–dimensional vector space over F. Then
the group of F–linear isometries of V is isomor-
phic to the group of (invertible) monomial n × n
matrices.

The proof of our theorem relies on a simple
combinatorial lemma: an isometry is completely
determinated by its action on the union of the
“axes”. In order to make a clear statement out of
this vague assertion we introduce some notation.

Let 0 be a fixed element of X. We denote an
element v = (x1, x2, . . . , xn) of V as

v =

n∑
i=1

xiei

If a coordinate xi is 0 then we omit it in the
above sum; hence 0 is the element (0, 0, . . . , 0)
of V . Notice that, with this notation, we have
fτ,σ(

∑
xiei) =

∑
τσ(i)(xi)eσ(i). We call the sub-

set of {1, 2, . . . , n} of indeces i such that xi 6= 0,
the support of v and we denote it by supp(v); it
is clear that | supp(v)| = d(v, 0).

If x ∈ X then xei is the element of V whose
all coordinates are 0 but the i–th that is x and,
clearly, supp(xei) = {i}. In particular Xei is the
set of all elements of V whose all coordinates but
the i–th are 0; this is the i–th axis in V . Let
A

.
= ∪ni=1Xei be the union of all axes. Our key

lemma is the following

Lemma. If an isometry f : V −→ V is the iden-
tity on A then it is the identity on V .

From this lemma the proof of the theorem fol-
lows quite easily.
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