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Recall that an associative ring R is said to satisfy the Engel condition if R satisfies the identity

[. . . [[x, y], y], . . . , y︸ ︷︷ ︸
n

] = 0,

for some n. It follows from Zel’manov’s celebrated result about the restricted Burnside problem [19] that
every finitely generated Lie ring satisfying the Engel condition is nilpotent. Kemer in [5] proved that if R
is an associative algebra over a field of characteristic zero that satifies the Engel condition then R is Lie
nilpotent. This result was later proved by Zel’manov in [18] for all Lie algebras. However these results
fail in positive characteristic, see [17,11]. Nevertheless, Shalev in [13] proved that every finitely generated
associative algebra over a field of characteristic p > 0 satisfying the Engel condition is Lie nilpotent.
This result was further strengthened by Riley and Wilson in [10] by proving that if R is a d-generated
associative C-algebra, where C is a commutative ring, satisfying the Engel condition of degree n, then
R is upper Lie nilpotent of class bounded by a function that depends only on d and n. Hence, in the
positive characteristic case one would need to assume that R is also finitely generated.

Let L = L0 ⊕ L1 be a Lie superalgebra over a field F of characteristic p 6= 2 with bracket ( , ). The
adjoint map of x ∈ L is denoted by adx. We denote the enveloping algebra of L by U(L). In case p = 3
we add the condition ((y, y), y) = 0, for every y ∈ L1. This identity is necessary to embed L in U(L).

The Lie bracket of U(L) is denoted by [a, b] = ab−ba, for every a, b ∈ U(L). We are interested to know
when U(L) satisfies the Engel condition. Note that the Engel condition is a non-matrix identity, that is
a polynomial identity not satisfied by the algebra M2(F) of 2 × 2 matrices over F. The conditions for
which U(L) satisfies a non-matrix identity are given in [2]. It follows from Zel’manov’s Theorem [18] that
over a field of characteristic zero U(L) satisfies the Engel condition if and only if U(L) is Lie nilpotent.
The characterization of L when U(L) is Lie nilpotent over any field of characteristic not 2 is given in [2].
Hence, we have

Corollary. Let L = L0 ⊕ L1 be a Lie superalgebra over a field of characteristic zero. The following
conditions are equivalent:

1. U(L) is Lie nilpotent;

2. U(L) is bounded Lie Engel;

3. L0 is abelian, L is nilpotent, (L,L) is finite-dimensional, and either (L1, L1) = 0 or dim L1 ≤ 1
and (L0, L1) = 0.

However this result is no longer true in positive characteristic as our following theorem shows.

Theorem 1. Let L = L0 ⊕ L1 be a Lie superalgebra over a field of characteristic p ≥ 3. The following
conditions are equivalent:

1. U(L) is bounded Lie Engel;

2. U(L) is PI, L0 is abelian, adx is nilpotent for every x ∈ L0, and either (L1, L1) = 0 or dim L1 ≤ 1
and (L0, L1) = 0;

3. U(L) is PI, L0 is abelian, L is nilpotent, and either (L1, L1) = 0 or dim L1 ≤ 1 and (L0, L1) = 0.
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Note that the above theorem does not follow from Zel’manov or Riley and Wilson’s results because
U(L) is not necessarily finitely generated.

Now let L = L0⊕L1 be a restricted Lie superalgebra over a field of characteristic p > 2 with enveloping
algebra u(L). In our next result we characterize L for which u(L) satisfies the Engel condition. Our results
complement the results of [15,16] where it is determined when u(L) satisfies a non-matrix identity or when
u(L) is Lie solvable, Lie nilpotent, or Lie super-nilpotent. Similar results for group rings and enveloping
algebras of restricted Lie algebras were carried out in [3,6] and [8], respectively.

Theorem 2. Let L = L0 ⊕ L1 be a restricted Lie superalgebra over a field of characteristic p > 2. The
following conditions are equivalent:

1. u(L) is bounded Lie Engel;

2. u(L) is PI, (L0, L0) is p-nilpotent, there exists an integer n such that (adx)n = 0 for every x ∈ L0,
and either (L1, L1) is p-nilpotent or dimL1 ≤ 1 and (L1, L0) = 0;

3. u(L) is PI, L is nilpotent, (L0, L0) is p-nilpotent, and either (L1, L1) is p-nilpotent or dimL1 ≤ 1
and (L1, L0) = 0.
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