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Let V be a vector space over a field F . Clearly,
the group T (V ) of all translations of V and any of
its coniugate subgroups by an element of GL(V )
are abelian regular subgroups of the affine group
AGL(V ). Caranti, Dalla Volta and Sala [3] ob-
tained a simple description of the abelian regular
subgroups of the affine group AGL(V ) in terms
of commutative associative radical algebras with
underlying vector space V . As an application,
they provide an example of an abelian regular
subgroup of the affine group over an infinite vec-
tor space that trivially intersects the group of
translations. It is well-known that such an ex-
ample cannot be given when the vector space is
allowed to be finite dimensional. To answer a
question which appeared in [11], Hegedűs [8] con-
structed regular subgroups of some affine groups
over a finite vector space containing only the triv-
ial translation. Of course, his construction leads
to non-abelian examples. Other examples can be
found, for instance, in [7] and [17]. A description
of the regular subgroups, not necessarily abelian,
of the affine group is obtained by the first author
and Rizzo [4] in terms of radical circle algebras, a
generalization of radical algebras. A vector space
V over a field F with a multiplication · is called
a (right) circle algebra if the following statements
hold:

(1) α(u · v) = (αu) · v,

(2) (u+ v) · w = u · w + v · w,

(3) u · (v+w+ v ·w) = u · v+ u ·w+ (u · v) ·w,

for all α ∈ F and for all u, v, w ∈ V . It is clear
that any associative algebra is a circle algebra
and that any commutative circle algebra is an as-
sociative algebra. This new structures are very
closely related to (right) braces, introduced by
Rump [14] to find non-degenerate involutive set-
theoretic solutions of the Yang-Baxter equation.
So, using Rump’s terminology [16], (right) circle
algebras hereafter are called (right) braces over
F or F -braces. Like in an ordinary algebra, let
us introduce the circle operation in an F -brace V
defined by u ◦ v := u+ v + u · v, for all u, v ∈ V .
Then (V, ◦) is a semigroup. In particular, if (V, ◦)
is a group, then we say that the F -brace V is rad-

ical. The main result of [4] establishes the follow-
ing link between regular subgroups of the affine
group AGL(V ) and F - brace structures with the
underlying vector space V .
Theorem[4] Let V be a vector space over a field
F . Denote by RB the class of radical F -braces
with underlying vector space V and by T the
set of all regular subgroups of the affine group
AGL(V ).

(a) If V • is a radical F -braces with underlying
vector space V , then T (V •) = {τx|x ∈ V },
where τx : V → V, y 7→ y ◦ x, is a regular
subgroup of the affine group AGL(V ).

(b) The map

f : RB −→ T , V • 7−→ T (V •)

is a bijection. In this correspondence, iso-
morphism classes of F -braces correspond
to conjugacy classes under the action of
GL(V ) of regular subgroups of AGL(V ).

We note that, recently, a generalization of the
above result to the holomorph of abelian group
has been obtained in [12].

Then, the open problem of determining all reg-
ular subgroups of an affine group formulated in
[10], may be replaced by that of determining all
radical F -braces. Thus, the new constructions of
radical F -braces presented in this paper allows to
obtain rather systematic constructions of regular
subgroups of the affine group. In particular, this
approach allows to put in a more general context
the regular subgroups constructed in [17].
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