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1. Introduction

The research activity in which the author was
involved in the last year concern two main topics:
the study of the integrable sector of the Skyrme -
Faddeev model and the determination of Symme-
try Invariant Discretization Schemes. Although
apparently well separated, the two topics are in-
terrelated by the fact that, outside of their possi-
ble integrable reductions, highly complex models
need to be treated numerically . But since this is
usually resources consuming and alternative algo-
rithms and methods may significantly improved,
by exploiting local point and more general sym-
metries in a systematic way.

In the present contribution Section 2 is is based
on the results of the paper [1], where the 4-
dimensional relativistic Skyrme-Faddeev model
was studied with the aim to find its integrable re-
ductions. In Section 3 a new symmetry invariant
discretization method is presented, on the base of
the results in the article [2]. As theoretical labo-
ratory for application of the method, the Liouville
equation was considered and different integration
schemes were compared.

2. Integrable sector of the Skyrme-
Faddeev model

The Skyrme-Faddeev model [3] is defined by
the action

L =
1

32π2
(∂µφ · ∂µφ− κ (1− φ · φ)

−λ
4

(∂µφ× ∂νφ) · (∂µφ× ∂νφ)

)
,

where λ > 0 is a scaling parameter, determining
the breaking of the conformal symmetry. Then
its finite energy localized excitations have typ-
ical size ≈

√
λ (skyrmion). The Lagrangian

multiplier κ implements the unimodular condi-
tion φ · φ = 1, than the polar representation
φ = (sinw cosu, sinw sinu, cosw) , for w and
u suitable functions, is introduced. The Euler–

Lagrange equations read

∂µw
µ = 1

2 sin(2w)uνu
ν+

λ
2 sinw uν ∂µ[sinw(wµuν − wνuµ)],

wµu
µ sin(2w) + sin2 w [∂µu

µ+
λ
2wν∂µ(uµwν − uνwµ)] = 0 .

These equations are not integrable in general. In
particular the skyrmion solutions indexed by the
Hopf topological charge (the hopfions) are numer-
ically computed [4,5]. We found good approxi-
mated expressions of them [6].

Actually, dimensional reductions of the equa-
tions will lead to extended infinite energy solu-
tions. However, we are motivated by: i) char-
acterize special completely integrables subsectors
and find analytical solutions, ii) give a suitable
mathematical description of the of the extended
phases observed in ferromagnets and multifer-
roincs [?, ?], iii) describe the observed interaction
among hopfions, waves and/or magnetic domains.

2.1. Domain-Walls
Limiting ourselves to the most important case,

let us vanish the coefficients of all functions of w
in (2.1), leading to the overdetermined quasilinear
system

∂µw
µ = 0, wµw

µ = −ε2,
uµw

µ = 0, aµw
µ = 0 with a = uνuν ,

where ε2 = 2
λ for notational clarity. The first

two equations form the d’Alembert-Eikonal sys-
tem [7], the general solution of which is given in
the implicit form via the auxiliary τ by

w = xkAk(τ) +A0(τ),

x0 = xkBk(τ) +B0(τ),

(Ai) =
√

2
λ Â (f (τ) , g (τ)))

(
Â

2
= 1
)
,

(Bi) = B̂ = ± Â×Â′

|Â×Â′|
[f (τ) , g (τ))] ,

where f (τ), g (τ), A0 (τ) and B0 (τ) are arbitrary
differentiable functions. An analysis on the solu-
tions has been partially performed. In particular,
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if B0 (τ) is not an injective continuous function,
caustics and singularities of the wave front may
appear. We know that in general the singularities
of the wave fronts are classified by the Coxeter
groups [8].

Concerning the residual subsystem, cross dif-
ferentiations of the above equations and a sys-
tematic substitutions of the x0-derivatives lead
to a set of compatibility conditions, which is the
Monge-Ampére equation Det [wij ] = 0, and the
involved quadratic constraints for the derivatives
uk. They can be simplified and possibly solved,
if one can find a first order linear system of the
form

u0 = Au1, u2 = Bu1, u3 = Cu1,

where the functions A, B, C depend wm and
∂n wm only. This strategy leads to the general
solution for u in 2-dimensional space, i.e.

u = F [w1, w2] , F arbitrary real differentiable

In 3 dimensions, a similar analysis is much more
complicated, but also in that case the u is com-
pletely determined as an arbitrary function of two
derivatives of w only.

2.2. Waves
Looking for invariant solutions of any 2-

dimensional sub-algebra of the translational sym-
metries of the Skyrme-Faddeev model, one is lead
to invariant reduction

w = Θ [θ] , u = Φ [θ]+ θ̃, θ = αµx
µ, θ̃ = βµx

µ

in which one distinguishes θ as the phase from the
pseudo-phase θ̃. The corresponding 3-parametric
ODE system arises[

2B3 − λ
4B sin2 Θ

]
Θθθ =

sin 2Θ
(
λ
8B Θ2

θ +B3Φ2
θ +B2Φθ +B1

)
2B3 sin2 Θ Φθθ + Θθ sin 2Θ (2B3Φθ +B2) = 0,

where B1 = −βµβµ, B2 = −2αµβ
µ B3 = −αµαµ

and B = B2
2 − 4B1B3. These system posses 4

integrals of motion and can be simplified to the
form

Θ = arcsin
√
ψ, Φ = −B2U2

2B3

[∫
dθ
ψ(θ) + θ

]
ψ2
θ = 64(ψ−1)(ψ−A1)(ψ−A2)

λ2Bψ1(ψ1−ψ) , (0 ≤ ψ ≤ 1)

where the constants U1,2, A1,2 and ψ1 = 8B3

λB are
related to the integrals of motion. Those equa-
tions are integrated in terms of incomplete ellip-
tic integrals of the third kind, and the general
solution leads to three different linear harmonic
branches in the limit of ψ1 is approaching A1, A2

and 1 respectively. However, for ψ1 → 1 the exact
simplest solution is derived

ψ =
1

2

(
(A1 −A2) cos

(
8√
Bλ

θ

)
+A1 +A2

)
,

leading to spin waves with two independent pla-
nar modes (sometimes called cyclonic and extra-
cyclonic [9]) At the opposite, one can notice
from the general solution admits infinite wave-
length limits, expressed in terms of elementary
hyperbolic functions, similar to localized soli-
tons. Thus, one can conjecture that varying in
a suitable way all parameters, classes of slowly
deformed periodic solutions can be found. To
do this, we obtained a set of ODE’s for the
slowly changing parameters, by resorting to the
Whitham average method [1].

3. Invariant Symmetry Discretization

As said in the Introduction, there is a gen-
eral program on the study of continuous sym-
metries of discrete equations and on the symme-
try preserving discretization of differential equa-
tions [10,11]. This program has several aspects
including i) discretize field theories on a discrete
space–time preserving continuous symmetries, ii)
improve numerical methods of solving specific or-
dinary and partial differential equations, by incor-
porating important qualitative features of these
equations. Such features may be integrability, lin-
earizability, Lagrangian or Hamiltonian formula-
tion, or some other features. One possible way of
doing this is to not use a preconceived constant
lattice, but construct an invariant set of equa-
tions defining both the lattice and system of dif-
ference equations. The lattice thus appears as
part of a solution of a set of discrete equations
and the symmetry group acts on the solutions of
the equation and on the lattice. We concentrate
on the preservation of Lie point symmetries. In
our case the idea is to take an ordinary or par-
tial differential equation (ODE or PDE) with a
known Lie point symmetry algebra L realized by
vector-fields. The differential equation is then ap-
proximated by a difference system with the same
symmetry algebra. Then, a difference system is
constructed out of the invariants of the Lie point
symmetry group G of the original ODE (PDE).
The Lie algebra L of G is realized by the same
vector fields as for the continuous equation, how-
ever its action is prolonged to all points of the lat-
tice, rather than to derivatives. To explore such
a procedure, we considered the completely inte-
grable hyperbolic Liouville equation in algebraic
version

uuxy − ux uy = u3, (3.1)
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since we can easily compare analytic solutions
with those on a lattice and because one may de-
scribe in detail the breaking of symmetry in a
discretization procedure. In fact, its general so-
lution is u = 2

φ1,x φ2,y

(φ1+φ2)
2 , for arbitrary differen-

tiable functions φ1 (x) and φ2 (y), and its point
symmetry algebra is isomorphic to the direct
sum of two Virasoro algebras L = virx ⊕ viry
and its maximal finite dimensional subalgebra is
slx (2,R)

⊕
sly (2,R). The basic idea of the in-

variant discretization of a PDE is to replace it by
a system of difference equations, formed out of
invariants of the action of the symmetry group of
the PDE. This difference system (∆S) describes
both the original PDE and a lattice. In the case
of a 2nd-order PDE in 2 variables like (3.1), the
∆S will have the form

Eα (xm+i,n+j , ym+i,n+j , um+i,n+j) = 0,

α = 1, . . . , N, imin ≤ i ≤ imax, jmin ≤ j ≤ jmax.

This difference system is written on a stencil: a
finite number N of adjacent points, sufficient to
reproduce, in the continuous limit, all derivatives
figuring in the differential equation. In order to
obtain an invariant ∆S we must construct it out
of difference invariants of the Lie point symmetry
group G of the PDE. To calculate these invariants
we consider the action of the symmetry vector
fields Ẑa at some reference point {x0,0, y0,0, u0,0}
and prolong them to all points in a chosen stencil,
amounting to a prolongation to the discrete jet
space prẐa =

∑
i,j(ξ

a
i,j∂xi,j +ηai,j∂yi,j +φai,j∂ui,j ).

The invariants on the stencil are obtained by
solving the equations prẐaI(xi,j , yi,j , ui,j) = 0.
Weak invariant, i.e. invariants for very special
values are also admissible. Working on a 4-point
stencil, and restricting to slx (2,R)

⊕
sly (2,R)

subalgebra, the corresponding group acts tran-
sitively on the space of the continuous variables
(x, y, u) ∈ R3, and sweeps out an orbit of codi-
mension 6 on the 12-dimensional space of all the
variables on the 4-point stencil. Hence we ob-
tain 6 functionally independent invariants. Two
of them can be used to define an invariant lattice.
However, They are in fact only weak invariants
under the Virasoro algebra. This constraints fixes
the lattice to be orthogonal. The remaining in-
variants slx (2,R)

⊕
sly (2,R) are not longer Vi-

rasoro invariants. However, certain functions of
them approximate the Liouville equation to or-
der O

(
h3k3

)
in the lattice meshes h and k. So,

one is lead to a SLx(2) ⊗ SLy(2) invariant dif-
ference scheme, not however Virasoro invariant.
The scheme is suitable for solving various types
of boundary value problems, giving uik on the
axes, or on upward or downward staircases. One

of the obtained recursion formula is

u1,1 =
u0,1u1,0

(
ah1,0k0,1

√
|u0,1u1,0|+ 1

)
u0,0

(
(a− 1)h1,0k0,1

√
|u0,1u1,0|+ 1

) .
We checked such a formula over a certain set of
test functions and we show that, under some sup-
plementary conditions the invariant scheme pro-
vides a much better approximation of exact solu-
tions than a comparable standard (non invariant)
scheme and also than a scheme invariant under an
infinite dimensional group of generalized symme-
tries introduced by Rebelo and Valiquette.
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