Halo effective theory for a—« interaction to next-to-next-to-leading order
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Nuclear reactions involving « particles consti-
tute a central issue of nuclear physics: besides
governing a-decay processes, they are crucial for
the stellar nucleosynthesis. The theory of Big-
Bang nucleosynthesis explains the formation of
light nuclei like “He, while heavier nuclei are pro-
duced inside the stars. This is due to the ab-
sence of stable A = 5 and 8 isobars. In partic-
ular, crucial for the development of life was the
formation of 12C, which proceeds through the so-
called triple o process. The latter in turn heavily
relies on the existence of the “Hoyle” state [1],
an excited state of 12C, predicted by Hoyle be-
fore its experimental discovery, with energy very
close to the a-8Be threshold. Only recently is the
structure of these nuclear systems being under-
stood in terms of the underlying nuclear interac-
tion among nucleons [2]. An alternative and more
effective approach consists in treating such nuclei
as clusters of a particles. Cluster models have
a long history, but the idea of effective theories
put them on a firmer theoretical ground. Indeed,
effective theories are rooted in the existence of a
separation of scales: in this case the separated
scales are the typical momenta involved in the
reactions of interest and the momenta necessary
to excite the « particle. A description in terms
of point-like o particles is simply more effective,
at sufficiently low energy, than one in terms of
interacting nucleons. The “halo” effective the-
ory refers to such a situation, of nuclei composed
of a stable core with a halo of orbiting nucleons
(or further a particles). The o — « interaction
is one essential ingredient of such description, be-
sides the N —a interaction and many-body forces.
It is composed of (an infinite tower of) contact
(zero-range) interactions, ordered according to
the number of momenta (or gradients) involved.
The theory is renormalizable order by order in
the low-momentum expansion. The strenghts of
the interaction vertices, the low-energy constants
(LECs), subsume the information of (unknown)
short-range dynamics. From this point of view,
ab-initio methods (in terms of interactions among
point-like nucleons, as given e.g. in chiral effec-
tive field theory) could be used to determine the
values of these LECs. In turns the LECs of the
effective theory of interacting nucleons could be

determined by ab-initio calculations in QCD (e.g.
on the lattice). In this contribution [3,4] we de-
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Figure 1. Leading-order predictions for the S-wave
phaseshifts as compared to experimental data [5] for
different values of the cutoff between A = 130 MeV
and A = 150 MeV.
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Figure 2. Same as Fig. 1 but for the D-wave phase-
shifts.

rive the (strong) o — « interaction to the next-to-
next-to-leading order (N2LO) of the low-energy
expansion. The strong interaction is considered
on the top of the Coulomb interaction. In fact,
a very delicate balance exists between the strong
attraction and the Coulomb repulsion, which re-
sults in the ®Be being only slightly unbound. It
constitutes a very narrow (width ~ 7 eV) reso-
nance in the S-wave a — a scattering at an en-
ergy of 92 keV in the laboratory frame. Both in-
teractions are regularized with a gaussian cutoff



fa(k?) = exp(—k?/2A?) depending only on mo-
mentum transfer k, so as to obtain a local interac-
tion in coordinate space, and the dependence on
the cutoff A is investigated. By implementing all
constraints from the underlying symmetries (ro-
tational, permutation and Galileian relativity) we
find that the strong potential depends on a single
LEC at leading order (LO), one further LEC at
next-to-leading order (NLO) and three LECs at
N2LO,
b

stron, a
Vi) = 120 { 1 + £

+% [Clk4 + 62k2Q2 + Cg(k X Q)z] } (1)
where Q denotes the average relative momentum
and appropriate powers of the cutoff are inserted
to make the LECs adimensional. The LO LEC
a is fixed from the position of the resonance at
92 keV for each value of the cutoff. The LO the-
ory is thus completely specified and the phase-
shifts can be compared to experimental ones.
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Figure 3. N2LO predictions for the S-wave phase-
shifts as compared to experimental data [5] for differ-
ent values of the cutoff between A = 130 MeV and
A =150 MeV.
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Figure 4. Same as Fig. 3 but for the D-wave phase-
shifts.

The results of this LO analysis are shown in Fig. 1
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Figure 5. Same as Fig. 3 but for the F-wave phase-
shifts.

for the S-wave and in Fig. 2 for the D-wave. For
the S-wave a satisfactory description of data up
to and beyond 10 MeV is reached for cutoffs be-
tween 130 MeV and 150 MeV. This range of cutoff
should be compared to the momenta correspond-
ing to the energy of the first excited state of the «
particle, Feye ~ 10 MeV then peye ~ 200 MeV. It
is reasonable to identify the spread in the predic-
tions corresponding to the above range of cutoffs
as the theoretical uncertainty inherent in this LO
description. Both the S and D waves are well re-
produced within the aforementioned theoretical
uncertainty, with a much larger uncertainty for
the D-wave. We can extend the analysis to NLO
and N2LO. In so doing we fix the LECs by repro-
ducing the position of the 8Be resonance and by
fitting the low-energy (F < 5 MeV) experimental
phaseshifts. The associated theoretical uncertain-
ties are much reduced already at NLO. In Figg. 3,
4 and 5 we show the results of the N2LO theory
for the S-, D- and F-wave respectively. Out of the
three LECs appearing at this order we only fit c3,
whose corresponding operator can be put in rela-
tion with the angular momentum squared. The
agreement with data is excellent with a remark-
ably small theoretical uncertainty. As a result,
cluster-model calculations can be put on a firm
theoretical ground, with a controlled theoretical
uncertainty.
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