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1Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Italy
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A fundamental decisional process in many busi-
ness activities concerns how to set the selling
prices so as to maximize its own revenue, once
knowing the selling prices of the competitors and
the customers’ preferences. The scenario in which
the latter are implicitly defined in terms of some
optimization problem are usually referred to as
Stackelberg pricing problems [6]. These problems
can be modeled as multi-player one-round games
in which there is a special player, the leader, while
all the others are followers. The first action is
undertaken by the leader who decides on some
parameters (e.g., the selling prices) and then the
followers respond by deciding their actions. Each
follower adopts, as her action, the optimal solu-
tion of a certain optimization problem (e.g., sat-
isfying her own demand at the minimum cost)
which depends on some of the parameters fixed
by the leader and on some other values on which
the leader has no control (e.g., the selling prices
of the competitors). Since the followers’ choices
influence, in turn, the leader’s revenue, the de-
termination of the best possible action for the
leader often results in a challenging algorithmic
problem.
A considerable research attention has been de-

voted in the last years to the study of Stackelberg
network pricing problems based on some funda-
mental (polynomial time solvable) optimization
problems, such as shortest paths, shortest path
trees and minimum spanning trees. In this pa-
per, we study the Stackelberg fuel pricing prob-
lem (SFPP) which is a Stackelberg network pric-
ing problem based on the gas station problem
(GSP): an optimization problem introduced in [5]
to model situations in which drivers have to go
from one location to another and have to decide
where to fill their cars with fuel so as to minimize
the travel cost, once knowing the fuel prices at
the various gas stations along the road network.

Model and Notation. For a positive integer k,
let [k] denote the set {1, . . . , k}. A road network
is an edge-weighted directed graph G = (V,E,w),
with |V | = n, |E| = m and w : E → R≥0 such
that, for each e = (u, v) ∈ E, w(e) specifies the
amount of fuel (expressed in gallons) needed to
go from u to v.
An instance (G, s, t, S, p) of the GSP is defined

by a road network G, a pair of nodes s, t ∈ V , a
set of nodes S ⊆ V and a function p : S → R≥0.
The set of nodes S represents the locations of
gas stations and the function p models the selling
prices (per gallon) at each of the gas stations.
There is a driver who needs to go from s to t.
For the sake of simplicity, we assume that the
driver’s car is equipped with a tank of unlimited
capacity and that s ∈ S, so that the driver can fill
with as much fuel as she wants at price p(s) when
starting her trip. The driver wants to determine
the best possible itinerary, that is, which (s, t)-
path to drive through and which gas stations to
stop at for fueling so as to minimize the total fuel
cost1.
An instance (G, (si, ti, λi)i∈[k], L, C, pC , e) of

the SFPP is defined by a road network G, k
source-destination pairs (si, ti) with an associ-
ated integer weight λi ≥ 1 for each i ∈ [k], two
sets L,C ⊆ V , a function pC : C → R≥0 and a
value e ≥ 0. The sets of nodes L and C repre-
sent the locations of gas stations: the gas stations
located at nodes in L are owned by the leader,
while those located at nodes in C are owned by
her competitors, so that the function pC models
the selling prices established by the competitors
at each of their gas stations2. Note that we do
not require L and C to be disjoint, i.e., either
the leader and one of her competitors may own
a gas station at the same location. The leader
buys (or produces) the fuel at price e per gallon.
There are k types of drivers (the followers) such
that, for each i ∈ [k], the driver of type i wants
to go from si to ti along the cheapest path in G,
where λi denotes the number of drivers of type
i, that is, how many drivers want to go from si
to ti. Once the leader has established a pricing
function pL : L → R≥0 defining the fuel prices
at her own gas stations, each follower of type
i ∈ [k] determines her action by solving the in-
stance (G, si, ti, L ∪ C, p) of the GSP, in which,
for each v ∈ L ∪ C, p(v) := min{pL(v), pC(v)}.
The leader has to determine the pricing function

1The amount of fuel bought at each gas station s is im-
plicitly defined by the minimum distance between s and
the successive station chosen for fueling
2In the case in which more than one competitor owns a
gas station in a given location v, pC(v) will denote the
cheapest fuel price among them.
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pL : L → R≥0 providing her with the highest pos-
sible revenue. To this aim, we make the follow-
ing simplifying assumption which is common in
the setting of Stackelberg pricing problems: when
the gas station problem has more than one opti-
mal solution, the follower always chooses the one
providing the leader with the highest revenue3.
Furthermore, we assume that si ∈ C ∀i ∈ [k],
otherwise, either the problem is not feasible or
the revenue is unbounded.
More formally, given a node v ∈ V and a pric-

ing function pL for the leader, let q(pL, v) :=
1pL(v)≤pC(v). For a pair of nodes u, v ∈ V , let
d(u, v) be the distance from u to v in G and
B(u, v) be the set of itineraries connecting u to
v, that is, the set of sequences of nodes [u =
vi1 , vi2 , . . . , vir = v] such that vis ∈ L∪C for each
s ∈ [r − 1]. Set ps := p(vis), ds := d(vis , vis+1)
and qs := q(pL, vis) for each s ∈ [r − 1]. Given
pL and B ∈ B(u, v), a driver choosing itinerary
B experiences a cost c(pL, B) and yields a contri-
bution g(pL, B) to the leader’s revenue which are
defined as follows:

c(pL, B) :=
r−1∑
s=1

ps · ds

and

g(pL, B) :=

r−1∑
s=1

(ps − e) · ds · qs.

Let cg(pL, B) = (c(pL, B), g(pL, B)) and de-
fine a total ordering relation ≺ on R≥0 × R≥0

such that [x1, y1] ≺ [x2, y2] ⇔ x1 < x2 ∨
{x1 = x2 ∧ y1 > y2}. Let B∗(u, v) ⊆ B(u, v)
be the set of itineraries B ⊆ B(u, v) minimiz-
ing cg(pL, B) according to the ordering relation
≺. Let cg(pL, u, v) := [c(pL, u, v), g(pL, u, v)] :=
minB∈B(u,v) cg(pL, B). Given a driver of type
i, we have that c(pL, si, ti) is the cost of her
cheapest path, and g(pL, si, ti) is her contribu-
tion to the leader’s revenue, so that g(pL) :=∑k

i=1 λi · g(pL, si, ti) is the leader’s total rev-
enue that has to be maximized. Let pM :=
maxi∈[k] pC(si). It is easy to prove that, if we
set pL(v) > min{pM , pC(v)} for some v ∈ L, no
driver will stop at station v for fueling. Simi-
larly, whenever pC(v) > pM for some v ∈ C, no
driver will stop at station v for fueling. Therefore,
we can suppose without loss of generality that
pC(v) ≤ pM ∀v ∈ C, the leader’s revenue g(pL) is
bounded and, in order to be maximized, pL can
be chosen in such a way that e ≤ pL(v) ≤ pC(v)
∀v ∈ L.

Related Work. Briest, Hoefer and Krysta au-
thor an influential work [3] on Stackelberg net-

3In fact, if this is not the case, the leader can decrease some
selling price of a negligible amount so as to achieve almost
the same revenue as in the case in which the assumption
holds.

work pricing problems which widely generalizes
previous results in the field. In particular, they
consider the case in which the edges of the net-
work are partitioned into two sets: the set of fixed-
price edges and that of priceable edges, with the
latter owned by the leader. Each follower buys
a subnetwork of minimum cost and so the leader
wants to assign suitable prices to the priceable
edges so as to maximize her revenue. They study
the approximation guarantee of the single-price
algorithm in this general class of problems. This
algorithm, which assigns the same (suitably com-
puted) price to all priceable edges, has been first
analyzed in [4] for the case of a single follower
buying a minimum spanning tree. Briest, Hoefer
and Krysta show that, for the case of a single fol-
lower, the approximation guarantee is (1 + ϵ)Hh,
where ϵ > 0 is an arbitrary value, h is the num-
ber of priceable edges and Hi is the ith harmonic
number, while, for the case of k followers, it be-
comes (1 + ϵ)(Hh + Hk). Finally, when the fol-
lowers may have different weights, they show that
the single-price algorithm achieves an approxima-
tion guarantee of (1 + ϵ)h2 and also provide a
lower bound of O(hϵ) on the approximability of
the problem.

Determining whether there are approximation
algorithms better than the single-price one is, per-
haps, the most important open problem in this
field of research. In fact, while the performance of
this algorithm remains essentially the same even
when instantiated to specific optimization prob-
lems such as shortest paths, shortest path trees
and minimum spanning trees, the impossibility
results known so far in these cases only refer to
APX-hardness, see [1,2,4].

Our Contribution. We show that the SFPP
is APX-hard even in the basic case in which the
road network is modeled by an undirected planar
graph and the competitors discriminate on two
different selling prices only, by means of a reduc-
tion from the maximum independent set prob-
lem on cubic graphs. This reduction, however,
requires that |L| is a non-constant value. This as-
sumption is essential, anyway, since, for the case
in which |L| = O(1), we show that the problem
can be solved in polynomial time.

We stress that the SFPP does not fall within
the scope of the Stackelberg network pricing prob-
lems defined by Briest, Hoefer and Krysta in [3]
and that the presence of additional parameters
in the definition of the problem (in particular,
the edge-weights) makes the performance of the
single-price algorithm unlikely to be uninfluenced
by the characteristics of the road network given
in input. To this aim, we define a general class of
Stackelberg network pricing problems which ex-
tends the one given by Briest, Hoefer and Krysta
and includes the SFPP. For this class of problems,
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we show that the single-price algorithm provides
an approximation guarantee which is logarithmic
in some parameters of the input instance and that
this bound is tight.
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