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1. Nonlinear Schrödinger systems

Nonlinear Schrödinger (NLS) equations are a
universal model for the behavior of weakly nonlin-
ear, quasi-monochromatic wave packets, and they
arise in a variety of physical settings. There are
two inequivalent versions of the equation:

iqt + qxx + σ2|q|2q = 0 , σ = ±1 (1)

corresponding to the two choices of the relative
sign for the nonlinear and the dispersive term.
The case σ = −1 is referred to as the defocusing
NLS equation. It describes the stable propaga-
tion of an electromagnetic beam in (cubic) nonlin-
ear media with normal dispersion, and has been
the subject of renewed applicative interest in the
framework of recent experimental observations in
Bose-Einstein condensates and dispersive shock
waves in optical fibers.
In [1] we addressed two issues in the spectral

theory of the scattering problem associated with
the defocusing NLS equation, specifically: (i) re-
late the existence and location of discrete eigen-
values of the scattering problem to the area of
the initial profile of the solution, suitably defined
to take into account the boundary conditions; (ii)
elucidate the radiative contribution to the asymp-
totic phase difference of the potential.
When σ = 1 the equation (1) is known as fo-

cusing NLS equation, and has been derived in
such diverse fields as deep water waves, plasma
physics, nonlinear fiber optics with anomalous
dispersion, magnetic spin waves, and more.
Our recent interest is in the solution of the

initial-value problem for the focusing NLS equa-
tion by the Inverse Scattering Transform (IST),
when q(x, t) does not approach zero as x → ±∞
(non-zero boundary conditions, NZBC).
Even though the IST for the focusing NLS

with rapidly decaying potentials was first pro-
posed more than 40 years ago, and has been sub-
sequently the subject of a vast amount of studies
and applications, not as much is available in the
literature in the case of nontrivial boundary con-
ditions. The reason for this deficiency is twofold:
on one hand, the technical difficulties resulting
from the NZBC significantly complicate the for-
mulation of the IST; on the other hand, the on-

set of modulational instability, also known as the
Benjamin-Feir instability in the context of water
waves, was believed to be an obstacle to the de-
velopment of the IST, or at least to its validity.
Nonetheless, a large number of exact solutions to
the focusing NLS equation with NZBC have been
found over the years by the use of direct methods.
Historically, the first such solution was found by
Peregrine in 1983. In recent years these solutions
have been actively studied worldwide, and the re-
newed interest is due to the fact that the devel-
opment of modulation instability in the governing
equation has been recently suggested as a mecha-
nism for the formation of extreme (also known as
“rogue”, or “freak”) waves, where energy density
exceeds the mean level by an order of magnitude.
At the same time, the observation of rogue

waves has been reported in an optical system,
based on a microstructured optical fiber. The
generation of these rogue waves has been mod-
elled using a generalized NLS equation, and
shown to be an infrequent evolution from initially
smooth pulses owing to power transfer seeded by
a small noise perturbation.
In view of these recent experimental develop-

ments, the investigation of the IST for the fo-
cusing case with NZBC presented itself as a very
interesting mathematical problem.
In [2] we developed the IST as a tool to solve

the initial-value problem for the focusing NLS

equation with NZBC ql/r(t) ≡ Al/re
−2iA2

l/rt+iθl/r

as x → ∓∞ in the fully asymmetric case for
both asymptotic amplitudes and phases, i.e., with
Al 6= Ar and θl 6= θr.
Specifically, we showed that the direct problem

is well-defined for NLS solutions q(x, t) such that
(

q(x, t) − ql/r(t)
)

∈ L1,1(R∓) with respect to x

for all t ≥ 0, and established the corresponding
analyticity properties of eigenfunctions and scat-
tering data are.
We then formulated the inverse scattering

problem both via (left and right) Marchenko in-
tegral equations, and as a Riemann-Hilbert prob-
lem on a single sheet of the scattering variables

λl/r =
√

k2 +A2

l/r , where k is the usual complex

scattering parameter in the IST.
Finally, we derived the time evolution of the
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scattering coefficients, showing that, unlike the
case of solutions with equal amplitudes as x →
±∞, here both reflection and transmission coef-
ficients have a nontrivial (although explicit) time
dependence.

The results obtained in [2] will be instrumen-
tal for the investigation of the long-time asymp-
totic behavior of fairly general NLS solutions with
nontrivial boundary conditions via the nonlinear
steepest descent method on the Riemann-Hilbert
problem, or via matched asymptotic expansions
on the Marchenko integral equations.

2. Coupled Maxwell-Bloch equations with

inhomogeneous broadening

The nonlinear interaction between radiation
and a multilevel optical medium has received con-
siderable attention over the past decades. The
phenomenon that describes the effect of a co-
herent medium response to an incident electric
field, to which the medium is totally transpar-
ent and which undergoes lossless propagation, is
known as self-induced transparency (SIT). SIT
was first discovered by McCall and Hahn in 1968
in the case of a resonant optical media undergo-
ing a pure two-level atomic transition. A large
variety of special solutions as well as an infinite
number of conservation laws associated with the
Maxwell-Bloch equations governing the SIT phe-
nomenon in a two-level medium were found by
Lamb in the early seventies. The initial value
problem for the propagation of a pulse through
a resonant two-level optical medium for the SIT
case was solved by applying the IST shortly after-
wards. More recently, the IST was employed to
solve the Maxwell-Bloch equations in more gen-
eral setting of two-level unstable optical media
to study the superfluorescence phenomenon and
related problems in laser optics.

It is also possible to formulate the propagation
of optical pulses in a three-level optical medium in
the framework of the IST. Optical pulse propaga-
tion in a three-level medium under two-photon or
double one-photon resonance conditions has been
studied extensively theoretically and experimen-
tally by various authors since the 1970s.

The basic physical problem of interest is the
propagation of two optical pulses in a medium of
three level atoms, in which the excited state |3〉
decays at a rate Γ to states other than |1〉 and |2〉.
The electric fields E1 and E2 corresponding to the
individual optical pulses are resonantly coupled
to the |1〉 ↔ |3〉 and |2〉 ↔ |3〉 atomic transitions,
respectively.

The material properties of the optical medium
are described by the Bloch density matrix ρ̃,
whose diagonal elements are determined by the
population densities of the atomic levels, while

the off-diagonal elements describe the complex
valued material polarizability envelopes of the op-
tical medium. The equations governing the tem-
poral evolution of the atomic levels in the opti-
cal medium and the propagation of the optical
pulses through the medium can be derived from
the Schrödinger and Maxwell’s equations using
a slowly varying envelope approximation. The
resulting system of equations are known as the
coupled Maxwell-Bloch (CMB) equations. In the
lossless case (Γ = 0), and under the assump-
tion that the propagation constants, which de-
pend on the dipole moments and the atomic num-
ber density for the two optical pulses through the
medium, are the same, the resulting CMB equa-
tions can be shown to admit a Lax pair, and can
be solved by IST.
In [3] we developed the IST to solve the general

initial value problem for the CMB equations with
inhomogeneous broadening describing the prop-
agation of localized optical pulses decaying suf-
ficiently rapidly as x → ±∞, through a three-
level medium. Furthermore, these solutions were
determined for generic initial preparation of the
medium, i.e., for a sufficiently broad class of spec-
ified boundary conditions for the Bloch density
matrix. Another key issue, not addressed else-
where before, is to determine the final state of
the medium given by the Bloch matrix after the
interaction with the electromagnetic field, i.e. the
asymptotic value ρ̃+ of ρ̃ as x → ∞.
Using the IST method we also constructed ex-

act n-soliton solutions for the optical pulses and
studied the soliton interaction properties includ-
ing polarization shifts for the optical pulses.
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