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Fingering convection [1] is a convective insta-
bility that occurs in fluids where two buoyancy–
changing scalars with different diffusivities have
a competing effect on density. The peculiar-
ity of this form of convection is that, although
the transport of each individual scalar occurs
down–gradient, the net density transport is up–
gradient. In a suitable range of non–dimensional
parameters, solutions characterized by constant
vertical gradients of the horizontally averaged
fields may undergo a further instability, which re-
sults in the alternation of layers where density is
roughly homogeneous with layers where there are
steep vertical density gradients, a pattern known
as doubly–diffusive staircases.

High–resolution, numerical simulations of
staircase–forming fingering convection [2] have
shown that, as a consequence of the aggregation
of small–scale buoyancy–carrying coherent struc-
tures into larger–scale clusters [3], the vertical
density flux F primarily depends on the vertical
density gradient ρ̄z, and that this dependence is
non-monotonic. Thus one is tempted to write a
closed equation for density having the form

∂ρ̄

∂t
= −∂Fρ (ρ̄z)

∂z
= −F ′ρ (ρ̄z)

∂2ρ̄

∂z2
(1)

This behaves as a non-linear, but otherwise or-
dinary, diffusion process where ρ̄z is such that
F ′ρ(ρ̄z) < 0, and it turns into a negative-diffusion
process where ρ̄z is such that F ′ρ(ρ̄z) > 0. One
then expects that in the latter case eq. (1) acts
so as to increase the fluctuations in the field ρ̄,
rather than quenching them, as ordinary diffusion
does. If F ′ρ(ρ̄z) < 0 for ρ̄z steeper than a given
threshold, then one might naively expect that
this simple model could stop the uncontrollable
growth of gradients that makes negative diffusion
processes ill-posed, because growing fluctuations
would generate growing gradients, which eventu-
ally would become large enough to be quenched.
Unfortunately, this is a deceptive argument. A
linear stability analysis shows that eq. (1) un-
dergoes an ultraviolet catastrophe: in a general
setting, the problem remains ill-posed.

We avoid the ill–posedness of the model (1) by

postulating, on the basis of well–established fluid
mechanical theories, such as Prandtl’s mixing–
length, a dependence of the density flux both
on the density gradient and on the kinetic en-
ergy of the fluid ē. This leads to a class of
models that can be used for expaining staircase–
formation phenomena [4]. In particular, we focus
our attention on the following two equations:{

b̄t = −
(
F − lē1/2b̄z

)
z

ēt =
(
lē1/2 ēz

)
z

+ F − lē1/2b̄z −Aēb̄1/2z

(2)

where b̄ is the buoyancy, and it is linked to density
by the expression ρ = ρo(1 − g−1b) (where ρo is
a reference density and g is the acceleration of
gravity); F and A are positive free parameters of
the problem; and l is the mixing length.

Steady, vertically–uniform solutions of eqs. (2)
exhibit the expected non–monotonic dependence
of the buoyancy flux on the buoyancy gradient
(fig. 1). However, a linear stability analysis
proves that the model (2) is immune from the
ultraviolet catastrophe. When the unstable in-
finitesimal perturbation grow and reach the non–
linear regime, the vertically–uniform solutions
morph into staircase–like profiles (fig. 2).
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Figure 1. From left to right: velocity scale U , mixing length l, and buoyancy flux C as a function of the
density ratio (that is, the non–dimensional vertical buoyancy gradient) for the steady state solutions of
the staircase model. See [5] for the parameters value.
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Figure 2. Time evolution of vertical profiles of horizontally averaged buoyancy (upper panel) and kinetic
energy density (lower panel) in a numerical solution of equations (2) with Rρ = 1.7 and the parameters
of Figure 1. In each panel, the profiles after the first have been shifted to the right as a function of time.
All quantities are expressed in arbitrary units.


