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Vittorio Bilò a Angelo Fanelli b Michele Flammini c d Gianpiero Monaco c and Luca Moscardelli e

aDipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Italy
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The evolution of scheduling closely tracked the development of computers. Given m machines that have
to process n jobs, minimizing the makespan of an assignment of the jobs to the machines is one of the
most well-studied problem in the Theory of Algorithms. In more details, assuming that the processing of
job i on machine j requires time pij > 0, the completion time of machine j (under a certain assignment)
is given by the sum of the processing times of all the jobs allocated to j. The makespan of an assignment
is the maximum completion time among all the machines (we stress that an assignment is not forced to
use all the available machines) and the objective of the scheduling problem is to find an assignment of
minimum makespan.
In the literature, three different models of machines have been adopted. The general setting illustrated

above is called scheduling problem with unrelated machines. An interesting particular scenario is the case
with related machines, where each job i has a load li > 0 and each machine j has a speed of processing
sj > 0, and thus the processing time of job i on machine j is given by pij = li/sj . Finally, the even more
specific setting in which the speed of each machine is 1 is referred to as the scheduling problem with
identical machines. Even this latter problem is NP-hard.
The approximability of the scheduling problem has been well understood for all the three models

described above. However, all the proposed solutions do not envisage fair allocations in which no machine
prefers (or envies) the set of the tasks assigned to another machine, i.e., for which her completion time
would be strictly smaller. In the literature, such fairness property is referred to as “envy-freeness” [3,4].
Specifically, consider a scenario in which a set of tasks (jobs) has to be allocated among employees
(machines) in such a way that the last task finishes as soon as possible. It is natural to consider fair
allocations, that is allocations where no employee prefers (or envies) the set of tasks assigned to some
other employee, i.e., a set of tasks for which her completion time would be strictly smaller than her actual
one.
It is possible to consider two different variants of this model, depending on the fact that an employee

(i) can envy the set of tasks assigned to any other employee or (ii) can only envy the set of tasks of other
employees getting at least one job: in the latter case, employees not getting any job do not create envy.
In the following, we provide some scenarios motivating both variants.
For the first variant, consider a company that receives an order of tasks that must be assigned among

its m employees. For equity reasons, in order to make the workers satisfied with their task assignment
so that they are as productive as they can, the tasks should be assigned in such a way that no envy is
induced among the employees.
For the second variant, consider a scenario in which a company, in order to fulfill a complex job

composed by several tasks, has to engage a set of employees that, for law or trade union reasons have to
be all paid out the same wage. Again, for making the workers as productive as they can, it is required
that no envy is induced, but in this case we are interested only in the envy among the engaged employees,
i.e. the ones receiving at least a task to perform.
We notice that the existence of envy-free schedules is not guaranteed in the first variant of the model.

For instance, consider a scenario where the number of machines is strictly greater than the number of
jobs. Clearly at least one machine would not get any job and all the machines getting at least one job
would be envious. Therefore, in the following of this paper we focus on the second varant of the model,
in which envy-freeness is required only among machines getting at least one job.
We adopt a more general definition of envy-free allocations, namely the k-envy-freeness (for any k ≥ 1):

Given an assignment and two machines j, j′ (where both j and j′ get jobs), we say that j k-envies j′ if
the completion time of j is at least k times the completion time she would have when getting the set
of jobs assigned to j′. In other words, an assignment is k-envy-free if no machine would decrease her
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completion time by a factor at least k by being assigned all the jobs allocated to another machine. Notice
that a k-envy-free assignment always exists: a trivial one can be obtained by allocating all the jobs to a
single machine, even if it might have a dramatically high makespan.
We are interested in analyzing the loss of performance due to the adoption of envy-free allocations.

Our study has an optimistic nature and, then, aims at quantifying the efficiency loss in the best k-envy-
free assignment. Therefore, we introduce the price of k-envy-freeness, defined as the ratio between
the makespan of the best k-envy-free assignment and that of an optimal assignment. In the literature,
other papers performed similar optimistic studies, see, for instance, [1,2]. The price of k-envy-freeness
represents an ideal limitation to the efficiency achievable by any k-envy-free assignment. In our work, we
also show how to efficiently compute k-envy-free assignments which nicely compare with the performance
of the best possible ones. We point out that the computation of non-trivial k-envy-free assignments is
necessary to achieve good quality solutions, since the ratio between the makespan of the worst k-envy-
free assignment and that of an optimal assignment can be very high. In particular, it is unbounded for
unrelated machines, n smax

smin
for related ones, where smax (resp. smin) is the maximum (resp. minimum)

speed among all the machines, and n for identical machines.
We consider the price of k-envy-freeness in the scheduling problem, that is, the ratio between the

makespan of the best k-envy-free assignment and that of an optimal assignment. We investigate the
cases of unrelated, related and identical machines and provide exact or asymptotically tight bounds on
the price of k-envy-freeness. We stress that low values of k implies a greater attitude to envy, which
tremendously reduces the set of k-envy-free assignments. A natural threshold that arose in our analysis
of the cases with related and identical machines is the value k = 2, as it can be appreciated in the
following table where we summarize our main results.
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A further result derives from the fact that our upper bound proofs are constructive and, therefore, they
de facto provide polynomial time algorithms able to calculate good k-envy-free assignments.
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