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Standard monomial theory for wonderful varieties
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Università del Salento
Via per Arnesano
73047 Monteroni di Lecce (LE)
Italy rocco.chirivi@unisalento.it

3Scuola Normale Superiore di Pisa
Piazza dei Cavalieri n. 7
56127 Pisa (PI)
Italy jacopo.gandini@sns.it

4Dipartimento di Matematica
Università di Pisa
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The first appearance of the idea of a stan-
dard monomial theory may be traced back to
Hodge’s study of Grassmannians in [11], [12].
Then Doubilet, Rota and Stein found a basis with
similar properties for the coordinate rings of the
space of matrices in [9]. This was reproved and
generalized to the space of symmetric and anti-
symmetric matrices by De Concini and Procesi in
[7].

A systematic program for the development of
a standard monomial theory for quotient of re-
ductive groups by parabolic subgroups was then
started by Seshadri in [19] where the case of mi-
nuscule parabolics is considered. Further, in [14]
Seshadri and Lakshmibai noticed that the above
recalled previous results could be obtained as spe-
cializations of they general theory.

This program was finally completed by Littel-
mann. Indeed, in [15], he found a combinato-
rial character formula for representations of sym-
metrizable Kac-Moody groups introducing the
language of L-S paths. Moreover, he used this
as an index set for the basis constructed in [16]
and he proved that this basis defines a standard
monomial theory for Schubert varieties of sym-
metrizable Kac-Moody groups. This theory has
been developed in the context of LS algebras over
poset with bonds in [2], [3] and [4].

We want now to briefly recall what a standard

monomial theory is, the reader may see [5] for
further details about this general setting. Let A
be a finite subset of an algebra A and suppose
we are given a transitive antisymmetric binary
relation ←− on A. We define an abstract mono-
mial a1a2 · · · aN of elements of A as standard if
a1 ←− a2 ←− · · · ←− aN . If the set of stan-
dard monomials is a basis of the algebra A as a
vector space then we say that (A,←−) is a stan-
dard monomial theory for A. Suppose, further,
we have a monomial order 6t on the monomi-
als of elements of A. By the previous assump-
tion, we may write any non-standard monomial
m′ as a linear combination of standard mono-
mials. If in such an expression only standard
monomials m with m′ 6t m appear, then we say
that we have a straightening relation for m′. If
we have a straightening relation for each non-
standard monomial, then we say that (A,←−,6t)
is a standard monomial theory with straightening
relations.

Given a simply connected semisimple algebraic
group G over an algebraically closed field k of
characteristic 0, a Borel subgroup B ⊂ G and
a maximal torus T ⊂ B, let Λ+ ⊂ Λ be the
monoid of dominant weights and the lattice of
weights, respectively. Fix a dominant weight
λ ∈ Λ+ with stabilizer a parabolic B ⊂ P ⊂ G,
denote by Bλ the set of L-S paths of shape λ
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and let Vλ be the G–irreducible module of high-
est weight λ. Littelmann’s construction provide
a basis Aλ = {pπ |π ∈ Bλ}, indexed by L-S
paths, for the module Γ(G/P,Lλ) ' V ∗λ , where
Lλ is the line bundle over G/P associated to λ.
The multiplication of sections Γ(G/P,Lλ)⊗2 −→
Γ(G/P,L2λ) induces a ring structure on the al-
gebra A(G/P ) =

⊕
n>0 Γ(G/P,Lnλ). This alge-

bra is the coordinate ring of the cone over the
embedding of G/P ↪−→ Vλ induced by Lλ. On
the basis Aλ one may define a relation ←− and
a monomial order 6t such that (Aλ,←−,6t) is
a standard monomial theory with straightening
relations for A(G/P ).

In [6], the second and fourth named authors
adapted Littelmann’s basis to the Cox ring (see
below) of complete symmetric varieties; this class
of varieties has been introduced by C. De Concini
and C. Procesi in [8]. As a result, they proved
the degeneration of the Cox ring to the coordi-
nate ring of a suitable multicone over a flag va-
riety. This degeneration allowed a new proof of
the rational singularity property for the Cox ring
of complete symmetric varieties.

The purpose of the present paper is a fur-
ther extension of these results to the Cox ring
of wonderful varieties. As a first step, we use
the occasion to introduce a general setting for a
multigraded standard monomial theory modelled
on the above recalled one. This setting may be
briefly summarized as follows.

Let A .
= A1 ∪ A2 ∪ · · · ∪ An be the union of

finite subsets of an algebra A. Suppose we have a
binary relation←− on A such that←− restricted
to Ai is transitive and antisymmetric for all i =
1, 2, . . . , n and, further, suppose we have bijective
maps φi,j from the set of comparable pairs a←− b
of Ai×Aj to the set of comparable pairs a′ ←− b′

of Aj × Ai satisfying some mild conditions. We
define a formal monomial a1a2 · · · aN as weakly
standard if a1 ←− a2 ←− · · · ←− aN , and we
say it is standard if all monomials obtained by
swapping in all possible ways adjacent pairs are
weakly standard. We define the multigrade of
a monomial a1a2 · · · aN as (k1, k2, . . . , kn) ∈ Nn
where ki is the number of elements of Ai in the
monomial. If the set of standard monomials is a
basis for A as a vector space and this basis induces
a multigrading for A, we say that (A,←−, φi,j)
is a multigraded standard monomial theory for
A. As above we introduce also a monomial order
and the straightening relations for non-standard
monomials.

As a motivating example for this setting one
may see the multigraded standard monomial the-
ory for the multicone over a flag variety con-
structed by the second named author in [4].

Now we recall what are the type of varieties we
are interested in. A G–variety X is wonderful of
rank r if it satisfies the following conditions:

– X is smooth and projective;

– X possesses an open orbit whose comple-
ment is a union of r smooth prime di-
visors, called the boundary divisors, with
non-empty transversal intersections;

– any orbit closure in X equals the intersec-
tion of the prime divisors which contain it.

Examples of wonderful varieties are the flag va-
rieties, which are the wonderful varieties of rank
zero, and the complete symmetric varieties. Won-
derful varieties have been considered in full gen-
erality by D. Luna in [17], [18] in the context of
spherical varieties. See [1] for a general introduc-
tion to wonderful varieties.

If X is a wonderful G–variety, then the Picard
group Pic(X) is freely generated by the classes of
the B–stable prime divisors of X which are not
G–stable. These divisors are called the colors of
X. Since X contains an open B–orbit, as in the
case of the Schubert divisors of a flag variety, the
colors form a finite set ∆, so that Pic(X) is a free
lattice of finite rank.

Given L,L′ ∈ Pic(X), we have a multiplication
map

mL,L′ : Γ(X,L)⊗ Γ(X,L′) −→ Γ(X,L ⊗ L′).

This induces an algebra structure on the direct
sum

C(X)
.
=

⊕
L∈Pic(X)

Γ(X,L),

which is called the Cox ring of X.
Denote by σ1, . . . , σr the boundary divisors of

X, and let si be the canonical section of σi, for
i = 1, . . . , r. As an algebra C(X) is generated by
the sections of the line bundles LD with D ∈ ∆
together with the sections s1, . . . , sr.

Given D ∈ Z∆, we denote by LD the corre-
sponding line bundle. By definition, X contains
a unique closed G–orbit Y ' G/P , and given
D ∈ N∆ we denote by λD the highest weight of
the dual of the simple G–module Γ(Y,LD

∣∣
Y

), so

that LD
∣∣
Y
' LλD

corresponds to the equivariant
line bundle on G/P associated to the dominant
weight λD. By taking into account the descrip-
tion of Γ(X,LD) as a G–module, we lift Littel-
mann’s basis of Γ(Y,LλD

) to X, and we take as
algebra generators for C(X) this set of lifts to-
gether with the sections s1, . . . , sr.
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Let ∆ = {D1, . . . , Dq} and consider the coor-
dinate ring

A(G/P ) =
⊕

(n1,...,nq)∈Nq

Γ(G/P,Ln1λD1
+···+nqλDq

)

of the multicone over the flag variety Y ' G/P
associated to the dominant weights λD1

, . . . λDq
.

We extend in a natural way the multigraded stan-
dard monomial structure of A(G/P ) to C(X).

As a consequence of our standard monomial
theory, we obtain a flat deformation which de-
generates C(X) to the product k[s1, . . . , sr] ⊗
A(G/P ). Since multicones over flag varieties have
rational singularities by [13] and since rational
singularities are stable under deformation by [10],
it follows that the Cox ring C(X) has rational sin-
gularities as well.
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