Standard monomial theory for wonderful varieties
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The first appearance of the idea of a stan-
dard monomial theory may be traced back to
Hodge’s study of Grassmannians in [11], [12].
Then Doubilet, Rota and Stein found a basis with
similar properties for the coordinate rings of the
space of matrices in [9]. This was reproved and
generalized to the space of symmetric and anti-
symmetric matrices by De Concini and Procesi in
[7].

A systematic program for the development of
a standard monomial theory for quotient of re-
ductive groups by parabolic subgroups was then
started by Seshadri in [19] where the case of mi-
nuscule parabolics is considered. Further, in [14]
Seshadri and Lakshmibai noticed that the above
recalled previous results could be obtained as spe-
cializations of they general theory.

This program was finally completed by Littel-
mann. Indeed, in [15], he found a combinato-
rial character formula for representations of sym-
metrizable Kac-Moody groups introducing the
language of L-S paths. Moreover, he used this
as an index set for the basis constructed in [16]
and he proved that this basis defines a standard
monomial theory for Schubert varieties of sym-
metrizable Kac-Moody groups. This theory has
been developed in the context of LS algebras over
poset with bonds in [2], [3] and [4].

We want now to briefly recall what a standard

monomial theory is, the reader may see [5] for
further details about this general setting. Let A
be a finite subset of an algebra A and suppose
we are given a transitive antisymmetric binary
relation <— on A. We define an abstract mono-
mial ajas---an of elements of A as standard if
a; ¢— ag <— --- «— ap. If the set of stan-
dard monomials is a basis of the algebra A as a
vector space then we say that (A, +—) is a stan-
dard monomial theory for A. Suppose, further,
we have a monomial order <; on the monomi-
als of elements of A. By the previous assump-
tion, we may write any non-standard monomial
m’ as a linear combination of standard mono-
mials. If in such an expression only standard
monomials m with m’ <; m appear, then we say
that we have a straightening relation for m’. If
we have a straightening relation for each non-
standard monomial, then we say that (A, +—, <;)
is a standard monomial theory with straightening
relations.

Given a simply connected semisimple algebraic
group G over an algebraically closed field k of
characteristic 0, a Borel subgroup B C G and
a maximal torus T C B, let AT C A be the
monoid of dominant weights and the lattice of
weights, respectively. Fix a dominant weight
X € AT with stabilizer a parabolic B C P C G,
denote by B, the set of L-S paths of shape A



and let V) be the G—irreducible module of high-
est weight A. Littelmann’s construction provide
a basis Ay = {p:|7 € B,}, indexed by L-S
paths, for the module I'(G/P, L)) ~ V', where
L) is the line bundle over G/P associated to A.
The multiplication of sections I'(G/P, £L,)®? —
I'(G/P, L2)) induces a ring structure on the al-
gebra A(G/P) = @,,5('(G/P, Lyy). This alge-
bra is the coordinate ring of the cone over the
embedding of G/P «—— V), induced by L£). On
the basis Ay one may define a relation <— and
a monomial order <; such that (Ay,+—,<;) is
a standard monomial theory with straightening
relations for A(G/P).

In [6], the second and fourth named authors
adapted Littelmann’s basis to the Cox ring (see
below) of complete symmetric varieties; this class
of varieties has been introduced by C. De Concini
and C. Procesi in [8]. As a result, they proved
the degeneration of the Cox ring to the coordi-
nate ring of a suitable multicone over a flag va-
riety. This degeneration allowed a new proof of
the rational singularity property for the Cox ring
of complete symmetric varieties.

The purpose of the present paper is a fur-
ther extension of these results to the Cox ring
of wonderful varieties. As a first step, we use
the occasion to introduce a general setting for a
multigraded standard monomial theory modelled
on the above recalled one. This setting may be
briefly summarized as follows.

Let A = A UA> U---UA, be the union of
finite subsets of an algebra A. Suppose we have a
binary relation «— on A such that <— restricted
to A; is transitive and antisymmetric for all i =
1,2,...,n and, further, suppose we have bijective
maps ¢; ; from the set of comparable pairs a <— b
of A; x A; to the set of comparable pairs a’ «— b’
of A; x A; satisfying some mild conditions. We
define a formal monomial ajas---ay as weakly
standard if a; «— as «— --- «— apn, and we
say it is standard if all monomials obtained by
swapping in all possible ways adjacent pairs are
weakly standard. We define the multigrade of
a monomial ajas---ay as (ki, ko, ..., k,) € N”
where k; is the number of elements of A; in the
monomial. If the set of standard monomials is a
basis for A as a vector space and this basis induces
a multigrading for A, we say that (A,<+—,¢; ;)
is a multigraded standard monomial theory for
A. As above we introduce also a monomial order
and the straightening relations for non-standard
monomials.

As a motivating example for this setting one
may see the multigraded standard monomial the-
ory for the multicone over a flag variety con-
structed by the second named author in [4].

Now we recall what are the type of varieties we
are interested in. A G—variety X is wonderful of
rank r if it satisfies the following conditions:

— X is smooth and projective;

— X possesses an open orbit whose comple-
ment is a union of r smooth prime di-
visors, called the boundary divisors, with
non-empty transversal intersections;

— any orbit closure in X equals the intersec-
tion of the prime divisors which contain it.

Examples of wonderful varieties are the flag va-
rieties, which are the wonderful varieties of rank
zero, and the complete symmetric varieties. Won-
derful varieties have been considered in full gen-
erality by D. Luna in [17], [18] in the context of
spherical varieties. See [1] for a general introduc-
tion to wonderful varieties.

If X is a wonderful G—variety, then the Picard
group Pic(X) is freely generated by the classes of
the B-stable prime divisors of X which are not
G-stable. These divisors are called the colors of
X. Since X contains an open B-orbit, as in the
case of the Schubert divisors of a flag variety, the
colors form a finite set A, so that Pic(X) is a free
lattice of finite rank.

Given L, L' € Pic(X), we have a multiplication
map

mee DX, L) @T(X, L) — (X, L& L)

This induces an algebra structure on the direct
sum

c(X) = QB (X, L),

LEPic(X)

which is called the Cox ring of X.

Denote by o1, ...,0, the boundary divisors of
X, and let s; be the canonical section of o;, for
i=1,...,r. As an algebra C'(X) is generated by
the sections of the line bundles Lp with D € A
together with the sections sq,...,s;.

Given D € ZA, we denote by Lp the corre-
sponding line bundle. By definition, X contains
a unique closed G-orbit Y ~ G/P, and given
D € NA we denote by Ap the highest weight of
the dual of the simple G-module T'(Y, ,CD|Y), SO
that £ D‘Y o~ L, corresponds to the equivariant
line bundle on G/P associated to the dominant
weight A\p. By taking into account the descrip-
tion of I'(X, Lp) as a G-module, we lift Littel-
mann’s basis of T'(Y, £,,) to X, and we take as
algebra generators for C'(X) this set of lifts to-
gether with the sections sq,...,s,.



Let A = {Dl, ..
dinate ring

., Dy} and consider the coor-

A@G/py = P

(n1,...,nq)ENT

of the multicone over the flag variety Y ~ G/P
associated to the dominant weights Ap,,...Ap,.
We extend in a natural way the multigraded stan-
dard monomial structure of A(G/P) to C(X).

As a consequence of our standard monomial
theory, we obtain a flat deformation which de-
generates C'(X) to the product k[si,...,s;] ®
A(G/P). Since multicones over flag varieties have
rational singularities by [13] and since rational
singularities are stable under deformation by [10],
it follows that the Cox ring C'(X) has rational sin-
gularities as well.
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