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Let p be an arbitrary prime number, and let G be a finite group whose order is divisible by p. Moreover,
let F,[G] denote the group algebra of G over the field F, with p elements, and let .S be an irreducible
(unital left) F,[G]-module. Then [G : S],—spiit denotes the number of p-elementary abelian chief factors
or for short p-chief factors G;j/G,;—1 (1 < j <n) of a given chief series

{1}=GocGiC---CGr=G

that are isomorphic to S as F,[G]-modules and for which the exact sequence {1} — G;/G;—1 —
G/G;j-1 — G/G; — {1} splits in the category of groups. It is well known that [G : S]p_spit s in-
dependent of the choice of the chief series of G (see also Theorem 2 below).

W. Gaschiitz proved the “only if’-part of the following result on split (or complementable) p-chief
factors of finite p-solvable groups (see [3, Theorem VII.15.5]). The converse of Gaschiitz’ theorem is due
to U. Stammbach [6, Corollary 1]), and in an equivalent form it was already proved earlier by W. Willems
[7, Theorem 3.9].

Theorem 1. A finite group G is p-solvable if, and only if, dimg, H'(G,S) = dimg, Endg, (¢)(S) - [G :
Slp—split holds for every irreducible F,[G]-module S.

Let Cq(M) :={g € G| g- m =m for every m € M} denote the centralizer of an Fp,[G]-module M in
G. In order to be able to apply his cohomological characterization of p-solvable groups (see [5, Theorem
A]) in the proof of Theorem 1, Stammbach established the following result (see the main result of [6]):

Theorem 2. Let G be a finite group, and let S be an irreducible Fp[G]-module with centralizer algebra
D := Endg, g)(S). Then

(G & S]p—spiit = dimp H' (G, S) — dimp H' (G/Cg(S), S)
holds. In particular, [G : S|p—spiit s independent of the choice of the chief series of G.

The goal of this paper is to investigate whether analogues of Theorem 1 and Theorem 2 hold in the
context of restricted Lie algebras. Recently, the authors have obtained analogues of these results for
ordinary Lie algebras (see [1, Theorem 4.3] and [1, Theorem 2.1], respectively). The key result of this
paper is a restricted analogue of Theorem 2. All the other major results in this paper are consequences
of it and [1, Theorem 5.5]. Let us remark that the characterizations of solvable restricted Lie algebras
by the cohomological and representation-theoretic properties of this paper ultimately follow from [1,
Theorem 4.3]. Contrary to group algebras of finite groups, universal enveloping algebras of non-zero
finite-dimensional Lie algebras are infinite-dimensional. Therefore, the proof of [1, Theorem 4.3] requires
filtration techniques. It would have been possible to make this paper independent of [1] by using (co-
)induced modules for restricted universal enveloping algebras instead of truncated (co-)induced modules
for ordinary universal enveloping algebras.

As a consequence of our results and the equivalence (i)<=>(iv) in [1, Theorem 5.5], we obtain the
analogue of Theorem 1 for split strongly abelian p-chief factors of restricted Lie algebras. In the final
section we apply the results obtained in Section 2 to the second Loewy layer of the projective cover of
the trivial irreducible module.
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