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This paper is devoted to the basic theory of
a class of semilinear nonautonomous parabolic
problems with non standard linear part. Namely,
we consider Cauchy problems such as















Dtu(t, x) = (A(t)u)(t, x) + ψ(t, u(t, x)),

t > s, x ∈ R
d,

u(s, x) = f(x), x ∈ R
d,

(1)

where the elliptic operators

A(t) :=

d
∑

i,j=1

qij(t, x)Dij +

d
∑

i=1

bi(t, x)Di

have unbounded coefficients qij , bi in I × R
d, I

being a right halfline or the whole R, Di = ∂/∂xi,
Dij = ∂2/∂xi∂xj .
We make suitable assumptions on the coeffi-

cients in such a way that the linear part gen-
erates a Markov evolution operator G(t, s) in
Cb(R

d), the space of the bounded and continu-
ous functions from R

d to R. The coefficients of
A(t) are smooth enough, namely locally Cα/2,α

for some α ∈ (0, 1), the matrices Q(t, x) =
[qij(t, x)]i,j=1,...d are uniformly positive definite,
and there exists a C2 Lyapunov function ϕ :
R
d 7→ [0,+∞) such that lim|x|→+∞ ϕ(x) = +∞

and

(A(t)ϕ)(x) ≤ a− c ϕ(x), (t, x) ∈ I × R
d,

for some positive constants a and c. Such as-
sumption allows to use maximum principle argu-
ments both in linear and in nonlinear equations.
The evolution operator G(t, s) is a contraction in
Cb(R

d), namely

‖G(t, s)f‖∞ ≤ ‖f‖∞, f ∈ Cb(R
d),

and for any s ∈ I, (t, x) 7→ (G(t, s)f)(x) ∈
C1,2((s,+∞)×R

d)∩C([s,+∞)×R
d) is the unique

bounded solution of
{

Dtv(t, x) = (A(t)v)(t, x), t > s, x ∈ R
d,

v(s, x) = f(x), x ∈ R
d.

Further assumptions allow to get global
smoothing properties of G(t, s) similar to the case
of bounded coefficients,

‖∇xG(t, s)f‖∞ ≤ C1√
t− s

‖f‖∞, f ∈ Cb(R
d),

‖∇xG(t, s)f‖∞ ≤ C2‖f‖C1
b
(Rd), f ∈ C1

b (R
d),

uniformly for s < t in bounded intervals.
The construction of the evolution operator

G(t, s) and its main properties are in [2]. They are
used to get local and global existence and unique-
ness results for (1) when f ∈ Cb(R

d), under stan-
dard assumptions on ψ.

The case of Lp initial data is more difficult.
Even in the linear autonomous case A(t) ≡ A,
the Cauchy problem may be not well posed
in Lp(Rd, dx) if the coefficients of A are un-
bounded, unless the coefficients satisfy very re-
strictive growth assumptions. The only way to
work in Lp spaces is to replace the Lebesgue mea-
sure dx by another measure, possibly a weighted
measure ρ(x)dx. The best situation in the au-
tonomous case is when there exists an invariant
measure µ, namely a Borel probability measure
such that
∫

Rd

T (t)f dµ =

∫

Rd

f dµ, t > 0, f ∈ Cb(R
d),

where T (t) is the Markov semigroup associated
to A in Cb(R

d). Under reasonable assumptions,
a unique invariant measure exists, it is absolutely
continuous with respect to the Lebesgue measure,
and it is related to the asymptotic behavior of
T (t), since

lim
t→+∞

(T (t)f)(x) =

∫

Rd

f dµ,

for any f ∈ Cb(R
d) and x ∈ R

d. Moreover, the
operators T (t) are easily extended to contractions
in the spaces Lp(Rd, µ) for every p ∈ [1,+∞).

The nonautonomous case is more complex. In
general, a measure µ such that
∫

Rd

G(t, s)f dµ =

∫

Rd

f dµ, t > s, f ∈ Cb(R
d),



2

does not exist. What plays the role of invari-
ant measures are the evolution systems of mea-
sures, namely families of Borel probability mea-
sures {µt : t ∈ I} such that

∫

Rd

G(t, s)f dµt =

∫

Rd

f dµs,

for any t > s ∈ I and f ∈ Cb(R
d). In this

case, G(t, s) is readily extended to a contraction
from Lp(Rd, µs) to Lp(Rd, µt) for t > s, for ev-
ery p ∈ [1,+∞). However, in contrast to the
autonomous case, where the invariant measure is
unique under very weak assumptions, evolution
systems of measures are not unique. Among all
evolution systems of measures, the one related to
the asymptotic behavior of G(t, s) is the (unique)
tight(1) evolution system of measures. See [2,1].

In the paper [2] a tight evolution system of mea-
sures {µt : t ∈ I} was proved to exist. Here we
set our nonlinear problem in the spaces Lp(Rd, µt)
where {µt : t ∈ I} is such a tight evolution sys-
tem of measures. As usual, to work in a Lp con-
text, the nonlinearity is assumed to be Lipschitz
continuous with respect to u. We introduce the
measure ν in I × R

d, defined by

ν(J ×O) :=

∫

J

µt(O) dt,

on Borel sets J ⊂ I, O ⊂ R
d and canonically

extended to the Borel sets of I × R
d. For every

f ∈ Lp(Rd, µs) we prove existence in the large
and uniqueness of a solution u to (1) belonging
to Lp((s, τ) × R

d, ν), for every τ > s. Moreover,
sups<t<τ ‖u(t, ·)‖Lp(µt) <∞.
By “solution” to (1) in an interval [s, τ ] we

mean a mild solution, namely a function that sat-
isfies the identity

u(t, ·) = G(t, s)f +

∫ t

s

G(t, r)ψ(r, u(r, ·))dr,

for any s ≤ t ≤ τ . If f is continuous and bounded,
the mild solution is shown to be a classical so-
lution and sufficient conditions for existence in
the large are provided. If f ∈ Lp(Rd, µs), the
mild solution is a strong solution in the sense of
Friedrichs, namely it is the Lp-limit of a sequence
of classical solutions.

We study also asymptotic behavior results. As-
suming that ψ(t, 0) = 0 for every t, we prove
a nonautonomous version of the principle of lin-
earized stability in the space Cb(R

d). In addition,
under a very strong dissipativity assumption on
ψ,

ξ ψ(t, ξ) ≤ ψ0 ξ
2, t ∈ I, ξ ∈ R,

1A set of Borel measures {µt : t ∈ I} in R
d is tight if for

every ε > 0 there exists ρ > 0 such that µt(Rd \B(0, ρ)) ≤
ε, for every t ∈ I.

with ψ0 ≤ 0, we prove a global stability result: for
every f ∈ Cb(R

d), the solution u to (1) satisfies

|u(t, x)| ≤ eψ0(t−s)‖f‖∞, t > s, x ∈ R
d.

The same assumption, together with some techni-
cal assumptions on the growth of the coefficients
as |x| → ∞, allows to prove a similar result in our
Lp context: for every f ∈ Lp(Rd, µs), the solution
u to (1) satisfies

‖u(t, ·)‖Lp(µt) ≤ eψ0(t−s)‖f‖Lp(µs), t > s. (2)

If the measures µt satisfy a uniform logarithmic
Sobolev type inequality with constant K,

∫

Rd

|g|γ log |g| dµr ≤ ‖g‖γLγ(µr)
log ‖g‖Lγ(µr)

+ γK

∫

{g 6=0}

|g|γ−2|∇g|2dµr, (3)

for any r ∈ I, g ∈ C1
b (R

d) and γ ∈ (1,+∞), then
estimate (2) can be improved as follows,

‖u(t, ·)‖Lp(t)(µt) ≤ eψ0(t−s)‖f‖Lp(µs), t > s,

where p(t) := eη0K
−1(t−s)(p− 1)+1, η0 being the

ellipticity constant. So, we get a hypercontrac-
tivity property that is similar to the linear case
([1]) if ψ0 = 0, hypercontractivity plus exponen-
tial decay if ψ0 < 0. Sufficient conditions for the
occurrence of the logarithmic Sobolev inequalities
(3) are in [1].

The results in Cb are obtained adapting the
usual techniques of semilinear parabolic equations
(e.g., [3,4]) to our situation.

The results in Lp are much less straightforward.
In particular, (1) cannot be seen as an evolution
equation in a fixed Lp space, because our spaces
Lp(Rd, µt) may depend explicitly on t.

Several examples of operators A(t) that satisfy
our assumptions are in the papers [2,1] to which
we refer for detailed proofs.
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