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Parabolic Cauchy problems with unbounded
coefficients set in unbounded domains, with suf-
ficiently smooth boundary, have been studied in
the autonomous case both in the case of homo-
geneous Dirichlet and Neumann boundary condi-
tions. On the other hand, the nonautonomous
counterpart have been studied, to the best of our
knowledge, only in the particular case Ω = R

d
+,

again only under homogeneous Dirichlet and Neu-
mann boundary conditions [2].
This paper is devoted to continue the analysis

started in [2], studying parabolic nonautonomous
boundary Cauchy problems with unbounded co-
efficients in a greater generality, with respect to
both the domain, where the Cauchy problems
are set, and the boundary conditions considered.
More precisely, let Ω ⊂ R

d be an unbounded
open set with a boundary of class C2+α, for some
α ∈ (0, 1), and let I ⊂ R be an open right halfline
(possibly I = R). For any fixed s ∈ I and any
f ∈ Cb(Ω) (the space of bounded and continuous
functions on Ω), we consider the nonautonomous
Cauchy problem











Dtu(t, x) = (Au)(t, x), t ∈ (s,+∞), x ∈ Ω,

(Bu)(t, x) = 0, t ∈ (s,+∞), x ∈ ∂Ω,

u(s, x) = f(x), x ∈ Ω.

(PB)

where the operators {A(t)}t∈I and {B(t)}t∈I are
defined as follows:

A(t) =

d
∑

i,j=1

qij(t, ·)Dij+

d
∑

i=1

bi(t, ·)Di−c(t, ·), (1)

B(t) =
d

∑

i=1

βi(t, ·)Di + γ(t, ·), t ∈ I. (2)

The coefficients of the previous operators are
smooth enough functions, and all of them but
β may be unbounded; function β either every-
where differs from 0 on ∂Ω or therein identically
vanishes. In the first case, we assume the usual

non-tangential condition, in the latter one, we as-
sume that γ ≡ 1 so that Bζ is the trace of ζ on
∂Ω.

We first prove existence and uniqueness of a
bounded classical solution of problem (PB). The
case γ ≥ 0 requires rather weak assumptions on
the coefficients of the operators A(t) and B(t).
No growth assumptions are assumed on the dif-
fusion and drift coefficients of the operators A(t),
whereas the potential is assumed to be bounded
from below to guarantee existence of bounded
solutions to problem (PB). Further, the exis-
tence of a so-called Lyapunov function ϕ, associ-
ated with the pair (A(t),B(t)) is assumed, which
serves as a fundamental tool to prove a maximum
principle, which yields uniqueness of the solution
to problem (PB). When γ takes also negative
values we assume an extra condition, which is
stated in terms of another Lyapunov function.
The existence and the uniqueness of a classical
solution to problem (PB) allow us to define an
evolution operator GB(t, s) of bounded linear op-
erators in Cb(Ω) and to prove some remarkable
continuity properties that this evolution opera-
tor enjoys. As a consequence of the Riesz rep-
resentation theorem and the continuity property
of the evolution operator, we can show that, for
any (t, s) ∈ Λ := {(t, s) ∈ I × I : t > s} and
any x ∈ Ω, there exists a finite Borel measure
gB(t, s, x, dy) such that

(GB(t, s)f)(x) =

∫

Ω

f(y)gB(t, s, x, dy), (3)

for any f ∈ Cb(Ω). Under an additional smooth-
ness assumption on the diffusion coefficients we
prove that GB(t, s)f admits an integral represen-
tation by means of a Green function gB : Λ×Ω×
Ω → (0,+∞), i.e., gB(t, s, x, dy) = gB(t, s, x, y)dy
for any (t, s, x, y) ∈ Λ × Ω × Ω. For any fixed
s ∈ I and almost any y ∈ Ω, the function
gB(·, s, ·, y) is smooth, satisfies DtgB−A(t)gB = 0
in (s,+∞)× Ω.

Formula (3) plays a crucial role in the study
of the compactness of the operators GB(t, s) in
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Cb(Ω), for (t, s) ∈ Λ × J2, J being a bounded
interval which follows from the tightness of the
family of measures {gB(t, s, x, dy), x ∈ Ω} for any
(t, s) ∈ Λ ∩ J2. In view of this fact, a sufficient
condition is then provided to guarantee the tight-
ness of the previous family of measures. Our re-
sult extends the results obtained in [1,7] in the
case when Ω = R

d.
Next, when the boundary operator B is inde-

pendent of t, under some growth assumptions on
the coefficients qij , bi and c at infinity and as-
suming that they are bounded in a small neigh-
borhood of ∂Ω, we prove an uniform gradient esti-
mate for GB(t, s)f . More precisely, we show that
for any T > s ∈ I, there exists a positive constant
Cs,T such that

‖∇xGB(t, s)f‖∞ ≤ Cs,T√
t− s

‖f‖∞, (4)

for any f ∈ Cb(Ω) and t ∈ (s, T ). Estimate
(4) (which can be then extended, by the evolu-
tion law, to all t ∈ (s,+∞)) is classical when
the coefficients of A(t) are bounded and Ω is an
open set with sufficiently smooth boundary, ei-
ther bounded or unbounded (see [8]). Recently,
it has been proved for the semigroup T (t) asso-
ciated in Cb(Ω) to autonomous elliptic operators
with unbounded coefficients, both in the case of
homogeneous Neumann (first in convex sets [4]
and, then, in the general case [3]) and Dirichlet
boundary conditions [5]. Very recently, we proved
estimate (4) for the solution to problem (PB) in
R

d
+ when homogeneous Dirichlet and Neumann

boundary conditions are prescribed on ∂Rd
+. The

simple geometry of Rd
+ and suitable assumptions

on the coefficients of the operator A(t), allowed to
extend these latter ones to R

d and to reduce the
problem to the whole space R

d, where gradient
estimates were already known ([6]). A symme-
try argument was then used to come back to the
Neumann and Dirichlet Cauchy problems set in
R

d
+.
In our situation the key tools to prove (4)

are the Bernstein method and a geometric trans-
formation which allows to locally transform the
boundary Cauchy problem (PB) into a Cauchy
problem in the halfspace R

d
+ where homogeneous

Robin boundary conditions are prescribed. Here,
the idea is to use the regularity of the domain
to go back by means of local charts to problems
defined in R

d
+ or in R

d. Assuming more smooth-
ness on the domain Ω and the vector β, we deter-
mine coordinate transformations which, locally
transform the homogeneous boundary condition
Bu = 0 on the boundary ∂Ω to an homogeneous
Robin boundary condition on R

d−1 × {0}. Thus,
under the assumption that the coefficients of A(t)

are bounded only in a neighborhood of the bound-
ary ∂Ω, we prove an uniform gradient estimates
in a small strip Ωδ near the boundary. Finally,
some growth assumptions on the diffusion coeffi-
cients and the potential term and a quite stan-
dard dissipativity condition on the drift term b,
are enough to show that (4) is satisfied also in
Ω\Ωδ. We point out that, differently from [4,3,5],
we do not assume that the diffusion coefficients
qij are globally bounded together with their spa-
tial gradients. Moreover, our results seem to be
new also in the autonomous case when B is a gen-
eral first-order boundary operator. In particular,
we can cover also the case when γ changes sign
on ∂Ω.

The special case when Ω is convex and homo-
geneous Neumann boundary conditions are pre-
scribed, can be treated and estimate (4) can be
proved without assuming any additional smooth-
ness assumption on the domain and any hypothe-
ses of boundedness for the coefficients of A(t) in a
neighborhood of the boundary. This can be done
adapting the arguments used in the autonomous
case, described here above.

Also when Ω = R
d
+ and homogeneous Robin

boundary conditions are prescribed on R
d−1 ×

{0}, we do not need to assume that the drift
term b and the potential term c are bounded. In-
deed, a simple trick allows us to transform homo-
geneous Robin boundary condition into homoge-
neous Neumann condition on ∂Rd

+. Hence, we
are reduced to a problem set in a convex set with
Robin boundary conditions, to which we can ap-
ply the already established results.
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