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1. Introduction

The idea that Mars may be the first extraterres-
trial body to yield evidence of life beyond Earth is
nowadays widespread among planetary scientists.
If life was once present on Mars, the so-called
biomarkers, that can be preserved for billions of
years under favourable conditions, may still ex-
ist. Biomarkers may be linked both with organic
and inorganic compounds. In particular, miner-
als associated with morphological fossils, may dis-
play distinctive morphologies, isotope signatures,
chemicals composition, or defect microstructures
that can reveal their biological origin (Banfield et
al. 2001).
Among the minerals, calcium carbonates

(CaCO3) are particularly interesting, because
they can be produced either by abiotic processes
or by biologically induced or controlled mineral-
ization (Mann, 2001). Many living organisms on
Earth, prokaryotes and eukaryotes, are able to
biomineralize calcite or aragonite and the most
primitive terrestrial evidence of life are biomin-
eralized carbonates (Schopf, 1993; Westall et al.,
2004). On the other hand, it is well known that
carbonates are also produced by chemical precip-
itation following different processes not related
to the presence of any life form (Wilkinson and
Given, 1986).
The increasing evidence for the presence of car-

bonates on Mars (Pollack et al., 1990; Bandfield
et al., 2003; Ehlmann et al., 2008; Boynton et al.,
2009; Palomba et al., 2009; Michalski and Niles,
2010; Morris et al., 2010; Carter and Poulet, 2012;
Michalski, et al. 2013), suggests that a number
of locations may have existed where surface con-
ditions would have been favourable for microbial
habitability. Some of these sites may be good
candidates for the exploration in search for signs
of extinct or extant life both on the surface and
in the near-subsurface.
The problem of discriminating between biomin-

erals and their abiotic counterparts is far from
trivial. Nevertheless by means of thermal process-
ing, it is possible to distinguish, using differential
thermal analysis (Cabane et al., 2004; Stalport
et al., 2005, 2007) or infrared (IR) spectroscopy
(Orofino et al., 2007), abiotic calcium carbonate

minerals (CaCO3, i.e. aragonite or calcite) from
the corresponding biominerals. In a series of pa-
pers we have developed and applied our method
(D’Elia et al., 2006; Orofino et al., 2007, 2009,
2010) to different carbonate samples in the form
of fresh shells and fossils of different ages found
in different places and easily recognizable as of
biotic origin. The method has been then success-
fully applied to microbialites (Blanco et al., 2011,
2013), i.e. bio-induced carbonates deposits, and
particularly to stromatolites, the laminated fabric
of microbialites well known to be typical examples
of very primitive forms of life on Earth (Westall
et al., 2004), hence samples of biocarbonates that
can be considered as good analogues of fossils of
putative Martian life forms.
An alternative and ancillary approach to distin-

guish biotic from abiotic carbonates could be the
study of their morphological aspect at different
scales (Cady et al., 2003; Stolarski and Mazur,
2005; Bianciardi et al., 2014). The complexity
of biomineralized structures gives an indication
of the potential of organic constituents for con-
trolling energetic factors during crystal synthesis.
Many organisms mediate inorganic crystalliza-
tion through the selective application of organic
compounds that exert a detailed control over
the structure (Belcher et al., 1996), orientation
(Berman et al., 1988), growth kinetics (Mann et
al., 1993), and nucleation sites of inorganic crys-
tals (Winter and Seisser, 1994). Researchers have
been studying biominerals for decades and have
found that crystal growth in vitro in the presence
of biomineral matrix have a distinct morphology
from those grown without matrix. These findings
generally support the hypothesis, suggested also
by morphological observations, that matrix must
limit crystal growth and may well influence the
structure of biominerals.
D’Elia et al. (2006) examining with a Scanning

Electron Microscope (SEM) at micrometer scale
the morphology of two shell fossils composed of
aragonite and calcite, showed that they exhibit a
well organized crystal pattern compared with the
compact structure of the mineral crystals imaged
at the same scale. In this work we extend the
morphological analysis to biocarbonates linked to
primitive living organisms which can be consid-
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Table 1
List of the studied samples.

Sample Description Composition Geologic period/epoch
Xenophora Mollusca, Gastropoda Aragonite Pleistocene

(1.8-0.1 Ma)
Ampullinopsis crassatina Mollusca, Gastropoda Aragonite Oligocene

(34-23 Ma)
GE Stromatolite Calcite, silicates (traces) Upper Jurassic, Tithonian

(151-146 Ma)
S/L Skeletal organism Calcite Upper Triassic, Carnian

(coral) (229-217 Ma)
S1A Skeletal organism Calcite, Aragonite Upper Triassic, Carnian

(sponge) (229-217 Ma)
U2 Skeletal organism Calcite Middle Triassic, Ladinian

(algae) (237-229 Ma)
Calcite Rock mineral Calcite —

ered as good analogues of remains of rock miner-
als linked to present or past, if any, life on Mars.
This research has been prompted by the need

to provide images and data concerning mineral
structures and textures useful to be compared to
those that will be acquired by the high resolu-
tion imaging systems that will explore and char-
acterize the near-sub surface of Mars studying the
rock/regolith to search for the past or present
life (e.g. CLUPI: the high performance Close-
Up Camera System on board the 2018 ExoMars
Rover; Josset et al., 2011, 2014). In the next sec-
tion 2 the main characteristics of the analyzed
samples are described. In section 3 we report the
experimental results, together with some discus-
sion and conclusions.

2. Sample description and preparation

The samples analyzed in this work are listed in
Table 1. The first two are shell fossils composed
of aragonite, a metastable phase of calcium car-
bonate (CaCO3), while the others are fossil stro-
matolites, the laminated fabric of microbialites,
i.e bio-induced carbonates deposits and skeletal
fossils of very primitive organisms (coral, sponge
and algae). As it can be seen all of them are
composed of calcium carbonate, calcite and arag-
onite, with some traces of silicates in the case of
the stromatolites. A mineral rock sample of abi-
otic origin is also included for comparison. The
estimated geological ages aof the samples are also
listed in Table 1. The beginning and the end of
each period/epoch are those established by the
International Commission on Stratigraphy (ICS)
deputed to the terrestrial stratigraphy on a global
scale (Ogg et al., 2008).
The two shell fossils, already studied by Orofino

et al. (2010), have been collected in two different
clay deposits located at two different sites which
are about 30 km apart one from the other in the

Salento Peninsula (Southern Italy).
The stromatolitic sample GE, Upper Juras-

sic in age (Tithonian, 151-146 Ma) was col-
lected from Thüste Quarries, south of Hanover,
Germany. In this area stromatolites developed
in stressed environments, probably represented
by a lagoonal setting, with alternate deposition
of oolitic limestone and evaporites (Jahnke and
Ritzkowski, 1980).

The samples S/L, S1A and U2 are skeletal or-
ganisms (coral, sponge and algae respectively)
embedded in microbial carbonates. They have
been selected within two rock samples that de-
veloped, in time, in two distinct palaeoecolog-
ical conditions characteristic of Alpe di Specie
and Punta Grohmann carbonate outcrops in
the Dolomites, Italy. In the Alpe di Specie
rock samples, skeletal organisms (Tubiphytes,
skeletal cyanobacteria, sphinctozoan and inozoan
sponges, etc.) represent a minor component of
the rock (usually less than 40%). On the con-
trary the composition is dominated by the mi-
critic fraction (about 60%), mainly represented
by autochthonous micrite (microbialite), with
subordinate amounts of micrite interpreted as
detrital (allochthonous micrite) (Russo et al.,
1991). The microbialites or autochthonous mi-
crites, which may exhibit both dense microcrys-
talline (aphanitic) or peloidal microfabric, are
sometimes organized in stromatolitic laminae or
thrombolitic fabric.

The U2 was selected from a rock sample col-
lected in the basinal section out crop at the base
of Punta Grohmann mountain, belonging to the
Sasso Piatto Massif, in the province of Bolzano,
Italy. The analyzed sample belongs to the Punta
Grohmann buildups. These buildups represent
the last records of the bioconstructions that first
appeared in the Late Pennsylvanian. They are
characterized by subcentimeter skeletons (mainly
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Figure 1. SEM images of particles of the shell fossils Xenophora (left panel) and Ampullinopsis Crassatina (right panel).

Figure 2. SEM image of particles of the calcite mineral.

calcified microbes, Tubiphytes and other prob-
lematica, small sponges) intimately associated
with microbialites and cements. The organic-
induced nature of microbialite was supposed on
the base of micromorphological evidence and epi-
fluorescence observations (Russo et al., 1997).
Their biotic origin has been confirmed by Blanco
et al. (2013, 2014) with independent methods.
In order to obtain fine particulate material for

SEM analysis, all the samples, appropriately ex-
tracted from the bulk specimen, were ground with
a mechanical mortar grinder for approximately 10
minutes and then the size fraction between 20 µm
to 50 µm was sieve selected for our investigation.
The mineral composition, reported in Table 1, has
been determined using both the IR spectroscopy
and the Energy Dispersive X-Ray (EDX) elemen-
tal analysis performed in our laboratory on all
samples (for details see Blanco et al., 2014).

3. SEM analysis and conclusions

The morphological analysis has been done us-
ing a Scanning Electron Microscope (SEM, JEOL
JSM - 6480LV), equipped with an Energy Disper-
sive X-ray (EDX) spectrometer (iXRF Systems,
EDS Sirius SD) for the elemental composition.
In Figures 1 and 2 are reported typical SEM

images of particles of the shell fossils and of the
calcite mineral crystals respectively. It is evident
the well organized crystal pattern of the shells
particles compared with the compact structure of
the mineral crystals grains imaged at the same
scale. Similar images of stromatolites and skele-
tal organisms (samples S/L, S1A and U2) are re-
ported in Figs 3 and 4. In these cases some parti-
cles show a compact structure (left panels) while
others exhibit the crystal pattern similar to that
of the shell fossils (right panels). The examina-
tion of numerous (more than 50) particles of each
sample allowed us to get some ”quasi-statistical”
results reported in Table 2.

Table 2
Morphology of the studied samples (see text).

Sample Compact Crystal
structure pattern

Xenophora – 100%
Ampullinopsis – 100%

crassatina
GE 37% 63%
S/L 77% 23%
S1A – 100%
U2 33% 67%
Calcite 100% –

As it can be seen the results cannot be conclu-
sive although they give indications that the crys-
tal structure of biotic carbonate may be differ-
ent from that of the abiotic mineral counterpart.
This means that, in order to reach meaningful
conclusions, we need to analyze the morphology
of more different samples as well as a number of
statistically significant particles. We think that
the effort toward this line of research may possi-
bly provide a method, although not conclusive, to
discriminate the origin of martian carbonates by
the next generation of remote sensing instruments
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Figure 3. SEM images of particles of the fossil stromatolites (sample GE).

Figure 4. SEM images of particles of the fossil skeletal organisms (samples S/L, S1A and U2).
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that will explore the surface and near-subsurce of
the red planet in the search for extraterrestrial
life.
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