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The nonlinear Schrödinger (NLS) equation is a
universal model for the behavior of weakly nonlin-
ear, quasi-monochromatic wave packets, and they
arise in a variety of physical settings. In particu-
lar, the so-called defocusing NLS equation:

iqt + qxx − 2|q|2q = 0 (1)

describes the stable propagation of an electro-
magnetic beam in (cubic) nonlinear media with
normal dispersion, and has been the subject of
renewed applicative interest in the framework of
recent experimental observations in Bose-Einstein
condensates and dispersive shock waves in optical
fibers.

The defocusing NLS, admits soliton solutions
with nonzero boundary conditions (NZBCs), so-
called dark/gray solitons, which have the form:

q(x, t) = q0e
−2iq20t [ cosα+ i sinα tanh ξ] (2)

ξ = q0 sinα (x+ 2q0 t cosα− x0)

with q0, α and x0 arbitrary real parameters. Dark
soliton solutions are such that |q(x, t)| → q0 as
x→ ±∞, and appear as localized dips of intensity
q20 sin2 α on the background field q0.

Even though the inverse scattering transform
(IST) as a method to solve the initial-value prob-
lem for the NLS equation was first proposed al-
most 40 years ago [1], with boundary conditions
(BCs) taken as

q(x, t)→ q±(t) = q0e
−2iq20t+iθ± as x→ ±∞ ,

and has been subsequently studied by several au-
thors [2–6], many important issues still remain
to be clarified. The main reason why, in spite of
the deep experimental relevance of the problem, a
complete and rigorous IST theory is still unavail-
able is due to the fact that one has to deal with
solutions that do not decay at space infinity. This
makes the IST significantly more involved than in
the case of decaying potentials, in particular as far
as the analyticity of the eigenfunctions of the as-
sociated scattering problem. As a matter of fact,
(the analog of) Schwartz class is usually assumed

for the potential, which is clearly unnecessarily
restrictive. In [2] the issue of establishing the an-
alyticity of the eigenfunctions was addressed by
reformulating the scattering problem in terms of
a so-called energy dependent potential, but the
drawback of that approach is a very complicated
dependence of eigenfunctions and data on the
scattering parameter.

A recent step forward in the direction of a rig-
orous IST for the defocusing NLS with NZBCs
was proposed in [9], where we proved that the di-
rect scattering problem is well defined for poten-
tials q such that q−q± ∈ L1,2(R±), L1,s(R) being
the complex Banach space of all measurable func-
tions f(x) for which (1 + |x|)sf(x) is integrable,
and analyticity of eigenfunctions and scattering
data was proved.

As to the inverse problem, we formulated and
solved it both via Marchenko integral equations,
and as a Riemann-Hilbert problem in terms of
a suitable uniform variable. We determined the
asymptotic behavior of the scattering data and
showed that the linear system solving the inverse
problem is well defined. Finally, we developed
the triplet method as a tool to obtain explicit
multisoliton solutions by solving the Marchenko
integral equation via separation of variables.

An important open issue is whether an area
theorem can be established, to relate the exis-
tence and location of discrete eigenvalues of the
scattering problem to the area of the initial pro-
file of the solution, suitably defined to take into
account the NZBCs.

For the focusing NLS with vanishing BCs, it
was shown [8] that there are no discrete eigen-
values and no spectral singularities if the L1-
norm of the potential is smaller that π/2. Con-
versely, it is well-known that no such result holds
for the Korteweg-de Vries equation, whose scat-
tering problem [which is the time-independent
Schrödinger equation] with positive initial datum
can have discrete eigenvalues even for initial pro-
files with arbitrarily small area.

In [10] we proved that no area theorem exists
for the defocusing NLS with nonzero boundary
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conditions, by providing explicit examples of box-
type initial conditions where at least one discrete
eigenvalue exists, no matter how small the dif-
ference between the initial profile and the back-
ground field is.

Specifically, we considered for the scattering
problem associated to the defocusing NLS equa-
tion, which is nothing but the Dirac equation with
non-zero rest mass, a piecewise-constant initial
condition (IC) of the type

q(x, 0) =

 q− = qo e
−iθ x < −L ,

qc = h eiα −L < x < L ,
q+ = qo e

iθ x > L ,

(3)

where h, qo and L are arbitrary nonnegative pa-
rameters, and α and θ are arbitrary phases. The
above IC models a potential well or a potential
barrier (both on a non-zero background) when
h < qo and when h > qo, respectively.

When θ = 0, the potential is an even func-
tion of x, and thus discrete eigenvalues come
in opposite pairs. Thus, in this case one can
restrict the search for eigenvalues to the range
0 < k < qo. It is convenient to introduce r = h/qo
and ωqoL, and to rescale the scattering parameter
as k = qoy. Figs. 1 and 2 show the discrete spec-
trum in some examples discussed in the paper, to
show that at least one discrete eigenvalue exists,
no matter how small the difference between the
initial profile and the background field is.

The second issue addressed in [10] is whether
the radiative part of the spectrum can yield a
nontrivial contribution to the asymptotic phase
difference of the potential. It is well-known (see,
for instance, [6]) that the trace formula for the
NLS equation determines the asymptotic phase
difference, arg(q+/q−), in terms of a contribu-
tion from the discrete spectrum and one from
the continuous spectrum via the reflection coeffi-
cient. We showed that the radiative components
of the solution can indeed provide a non-zero con-
tribution to the asymptotic phase difference of
the potential. Again, we do so by explicitly pro-
viding examples of piecewise constant initial con-
ditions corresponding to a non-zero asymptotic
phase difference in the potential for which no dis-
crete eigenvalues are present.

From an applied point of view, these results are
relevant in the context of recent theoretical stud-
ies and experimental observations of defocusing
NLS in the framework of dispersive shock waves
in optical fibers (see, for instance, [7] regarding
the appearance and evolution of dispersive shock
waves when an input (reflectionless) pulse con-
taining a large number of dark or gray solitons
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Figure 1. The discrete spectrum of the potential
well as a function of ω for r = 0.7 and α = 0. The
horizontal axis is y = k/qo, the vertical axis is ω.
The dashed vertical line identifies the value y = r.
The dotted horizontal lines delimit the exclusion
zone

√
1− r2/[2r(r−cosα)] ≤ ω ≤ π/(2

√
1− r2).
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Figure 2. The discrete spectrum of the potential
well as a function of ω for r = 0.7 and α = π/2,
axes as in Fig. 1.

is injected in the fiber). Moreover, this work will
pave the way for generalizing similar results to
the defocusing vector NLS equation.
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Figure 3. The discrete spectrum of the potential
barrier (r > 1) as a function of ω for r = 1.2 and a
few different values of α: α = π/4 (blue), α = π/2
(purple), α = 2π/3 (red) and α = π (orange).
As before, the horizontal axis is y = k/qo, the
vertical axis is ω.
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