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Electromagnetic structure of light nuclei in Chiral Effective Theory
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Besides providing a justification for the hier-
archy of nuclear forces, establishing a clear con-
tact with the underlying theory of strong inter-
action and its symmetries, and leading to a well
defined expansion scheme, susceptible of system-
atic improvement, the chiral effective field the-
ory (χEFT) is ideally suited for deriving consis-
tent electroweak currents. Indeed, chiral pertur-
bation theory is formulated as an effective the-
ory of external currents, which are coupled to
the degrees of freedom of the fundamental the-
ory. The constraints imposed by chiral symme-
try, so-called chiral Ward identities, are obtained
promoting the global chiral symmetry to a local
one [1], with the external currents rµ and ℓµ, rep-
resenting the corresponding gauge fields. The
explicit breaking of chiral symmetry by quark
masses and electromagnetic currents is naturally
implemented: correlation functions are to be eval-
uated with the scalar source χ proportional to
the quark mass matrix and the external currents
set equal to the photon field, rµ = ℓµ = QAµ

with Q = ediag( 2
3
,− 1

3
) in the meson sector and

Q = ediag(1, 0) in the nucleon sector.
The effective Lagrangian is the most general

one invariant under chiral symmetry: it contains
an infinite number of operators, classified accord-
ing to the chiral counting, a combined expansion
in powers of quark masses and small momenta,
with χ ∼ O(p2). The chiral counting is thus the
organizing principle: it works because Goldstone
bosons have derivative interactions, as dictated
by the Goldstone’s theorem.
A generic transition amplitude can be obtained

from the interaction Hamiltonians in the frame-
work of time-ordered perturbation theory. This
allows to isolate the so-called reducible diagrams,
i.e. those that contain purely nucleonic inter-
mediate states. Indeed such diagrams are en-
hanced by the presence of small energy denom-

inators, and need to be resummed to all orders.
This is accomplished by the dynamical equations
(e.g. the Lippman-Schwinger equation), whose
kernel admits a well defined low-energy expan-
sion. The predictions for physical observables are
parametrized, at each order, by a finite set of uni-
versal constants, so-called low-energy constants
(LECs), which have to be taken from other exper-
iments, and effectively implement the relations
that chiral Ward identities impose on different
observables. The divergent loop integrations are
regularized with a cutoff Λ. The Λ dependence
should be absorbed by the running of the LECs,
would all orders be considered at once. Thus the
remaining Λ dependence signals the convergence
of the expansion scheme.

Within this framework we have calculated the
nuclear electromagnetic current [2] and charge
[3] operators up to one-loop order of the chi-
ral expansion, amounting respectively to (next-
to-)3leading order (N3LO) and N4LO, and ob-
tained reasonable predictions for thermal neu-
tron captures on deuteron and 3He [4], although
the convergence pattern was not entirely satisfac-
tory. More recently, in Ref. [5] we have devised
a further scheme for the extraction of the rele-
vant LECs, which leads to stable results, and cal-
culated the resulting electric and magnetic form
factors of deuterons and trinucleons. There are
5 LECs which enter the nuclear electromagnetic
current operator up to one loop order, while the
charge operator is parameter-free. Two of the un-
known LECs (one isoscalar and one isovector) are
genuinely two-nucleon parameters, entering the
two-nucleon contact Lagrangian. The remaining
three come from the subleading pion-nucleon La-
grangian, and they are in principle measurable in
pion-nucleon processes. However, the large un-
certainties associated with such procedure, mo-
tivate us to use nuclear data to constrain them.
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In addition we use ∆-resonance saturation to fix
two of the isovector LECs, and therefore we are
left with one additional isoscalar LEC. We fix the
two isoscalar LECs, denoted dS

1
and dS

2
, to re-

produce the deuteron magnetic moment and the
isoscalar combination of the trinucleon magnetic
moments. This is done for different values of Λ
and for different models of two- and three-nucleon
interaction, namely AV18+UrbanaIX and chiral
N3LO+N2LO potentials. In order to fix the
isovector LEC, we use either the isovector com-
bination of the trinucleon magnetic moments or
the neutron-proton capture cross sections, as dis-
played in Fig. 1. As it is apparent, we obtain
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Figure 1. Cumulative contributions to the isovector
combination of the trinucleon magnetic moments and
to the neutron-proton capture cross section, using ei-
ther of the two observables to fix the isovector LEC.

stable, model-independent predictions to 1% and
2% respectively. With all the LECs determined,
we derive predictions for the electric charge and
quadrupole form factor and magnetic form fac-
tors of deuteron and trinucleons. The results for
the magnetic form factors are compared to the ex-
perimental data in Figg. 2 and 3. The deuteron
electromagnetic structure is perfectly described
up to momentum transfers of 2-3 fm−1, and ac-
tually for the charge form factor this agreement
extends to much larger momenta ∼ 6 fm−1, cer-
tainly larger than the range of validity of the chi-
ral expansion. Curiously, the hybrid calculation
(with AV18 potential) exhibits a much weaker
cutoff dependence, and this signals a significant
scheme dependence. Also for the A = 3 nuclei
we obtain a good description up to q ∼ 3 fm−1,
with a large effect of two-body currents, while the
data are underpredicted at higher momenta. Also
for the charge form factor we obtain similar be-
haviour, with the chiral loops decisive in bringing
theory closer to the data in the diffraction region.

Figure 2. Deuteron B(q) structure function and
magnetic form factor compared with the result at
leading order (LO) and with experimental data, for
the two adopted interaction models. The bands de-
note the variation with Λ.
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Figure 3. 3He and 3H magnetic form factors and
their isoscalar/isovector combinations. Notations as
in Fig. 2. The isovector LECs is fixed to the magnetic
moment.
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