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Let A be an associative algebra over a field F. Then A can be regarded as a Lie algebra by means of
the Lie bracket defined by [x, y] = xy − yx, for every x, y ∈ A. The algebra A is said to be Lie solvable
if it is solvable as a Lie algebra.

Lie solvable algebras have been extensively studied over the years. There has been a special attention
to group algebras. Let FG be the group algebra of the group G over a field F. Recall that G is said to
be p-abelian if p > 0 and G′, the commutator subgroup of G, is a finite p-group. Moreover, in the zero
characteristic case we say that G is 0-abelian if it is abelian. Passi, Passman and Sehgal in [15] proved
that a group algebra FG is Lie solvable if and only if either char(F) 6= 2 and G is p-abelian or char(F) = 2
and G has a 2-abelian subgroup of index at most 2.

Restricted Lie algebras and p-groups enjoy similar properties and so it was of interest to find an analogue
of Passi-Passman-Sehgal’s result for restricted Lie algebras. Let L be a restricted Lie algebra over a field
of positive characteristic p and denote by u(L) the restricted (universal) enveloping algebra of L. Riley
and Shalev in early 1990s proved that if p 6= 2 then u(L) is Lie solvable if and only if L′ (the derived
subalgebra of L) is finite-dimensional and p-nilpotent. However, they left out the even characteristic
case. The purpose of the present paper is to fill this gap, thereby completing the classification. Our main
result shows that the analogue of group ring case in p = 2 fails for restricted Lie algebras and indeed, as
we shall see below, the characterizations in p = 2 case are significantly different.

A polynomial identity (PI) is called non-matrix if it is not satisfied by the algebra M2(F) of 2 by 2
matrices over F. Note that Lie solvability is a non-matrix PI provided that char(F) 6= 2. Indeed, if
char(F) = 2 then M2(F) is Lie center-by-metabelian. The non-matrix varieties of algebras have been
extensively studied, see for example [10], [12], [13], [20], and enveloping algebras have received special
attention in this respect [3], [4], [23]. Using the standard PI-theory, like Posner’s Theorem, one can
deduce that if R is an associative algebra that satisfies a non-matrix PI over a field F of characteristic p
then [R,R]R is nil. If we further assume that R is Lie solvable and p 6= 2, then [R,R]R is nil of bounded
index (see [20]). Moreover, if we restrict ourselves to R = u(L) then R satisfies a non-matrix PI if and
only if [R,R]R is nil of bounded index (see [23]). However, if u(L) is Lie solvable and p = 2 then L′ may
not be even nil as we shall see below in our main result.

In order to state the main result, we recall a few definitions. A subset S of L is said to be p-nilpotent if
there exists m > 0 such that S[p]m = {x[p]m |x ∈ S} = 0. We denote by Z(L) the center of L. Following
[7], we say that a restricted Lie algebra is strongly abelian if it is abelian and its power mapping is
zero. In analogy with group rings, we say that a restricted subalgebra H of L is p-abelian if H ′ is finite-
dimensional and p-nilpotent. For a subset X of L we denote by 〈X〉F the vector subspace spanned by X.
Our main result is the following:

Main Theorem. Let L be a restricted Lie algebra over a field F of characteristic 2. Let F̄ be the algebraic
closure of F and set L = L ⊗F F̄. Then u(L) is Lie solvable if and only if L has a finite-dimensional
2-nilpotent restricted ideal I such that L̄ = L/I satisfies one of the following conditions:

(i) L̄ has an abelian restricted ideal of codimension at most 1;

(ii) L̄ is nilpotent of class 2 and dim L̄/Z(L̄) = 3;

(iii) L̄ = 〈x1, x2, y〉F̄ ⊕ Z(L̄), where [x1, y] = x1, [x2, y] = x2, and [x1, x2] ∈ Z(L̄);

(iv) L̄ = 〈x, y〉F̄ ⊕H ⊕Z(L̄), where H is a strongly abelian finite-dimensional restricted subalgebra of L̄
such that [x, y] = x, [y, h] = h, and [x, h] ∈ Z(L̄) for every h ∈ H;

(v) L̄ = 〈x, y〉F̄⊕H⊕Z(L̄), where H is a finite-dimensional abelian subalgebra of L̄ such that [x, y] = x,
[y, h] = h, [x, h] ∈ Z(L̄), and [x, h][2] = h[2], for every h ∈ H.
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We also show that the extension of the ground field is necessary in the statement of our main theorem.
Furthermore, note that the cases (ii)-(v) can occur only when L′ is finite-dimensional. In other words, if
u(L) is Lie solvable and L′ has infinite dimension, then L has a 2-abelian restricted ideal of codimension
at most 1.

In the last two decades there has been some interest on the derived length of Lie solvable group
algebras and enveloping algebras (see [6], [22], [26], [27], [30], [31], [33]), and small characteristics have
been considered separately, see for example [11], [24], [29]. It is also worth mentioning that besides the
interest on their own, restricted enveloping algebras occur naturally in the study of graded group rings
(see e.g. [18], [25]). For instance, by using this approach, in [25] Shalev showed that a graded group ring
of a finitely generated group ring over a field of characteristic p > 0 satisfies a polynomial identity if and
only if the pro-p completion of G has the structure of a p-adic Lie group.

Finally, let L be a Lie algebra over an arbitrary field F and let U(L) denote the ordinary universal
enveloping algebra of L. Necessary and sufficient conditions for U(L) to satisfy a polynomial identity
have been found in [1]. Moreover, it is known that if F has characteristic different from 2, then U(L) is
Lie solvable only when L is abelian (see [21, §6, Corollary 6.1]). This is no longer true in characteristic 2.
As an application of our main theorem, in the concluding section a description of Lie solvable enveloping
algebras in characteristic 2 will be obtained, thereby completing the characterization also in the ordinary
case.
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