Approximating the Revenue Maximization Problem with Sharp Demands
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A major decisional process in many business
activities concerns whom to sell products (or ser-
vices) to and at what price, with the goal of max-
imizing the total revenue. On the other hand,
consumers would like to buy at the best possible
prices and experience fair sale criteria.

In this work, we address such a problem from
a computational point of view, considering a two-
sided market in which the supply side consists of
m indivisible items and the demand one is popu-
lated by n potential buyers (in the following also
called consumers or customers), where each buyer
i has a demand d; (the number of items that 4 re-
quests) and valuations v;; representing the benefit
1 gets when owing item j. As several papers on
this topic, we assume that, by means of market
research or interaction with the consumers, the
seller knows each customer’s valuation for each
item.

The seller sets up a price p; for each item j
and assigns (i.e., sells) bundle of items to buyers
with the aim of maximizing her revenue, that is
the sum of the prices of all the sold items. When
a consumer is assigned (i.e., buys) a set of items,
her utility is the difference between the total val-
uation of the items she gets (valuations being ad-
ditive) and the purchase price.

The sets of the sold items, the purchasing cus-
tomers and their purchase prices are completely
determined by the allocation of bundles of items
to customers unilaterally decided by the seller.
Nevertheless, we require such an allocation to
meet, two basic fairness constraints: (i) each cus-
tomer ¢ is allocated at most one bundle not ex-
ceeding her demand d; and providing her a non-
negative utility, otherwise she would not buy the
bundle; (ii), the allocation must be envy-free [7],
i.e., each customer ¢ does not prefer any subset of
d; items different from the bundle she is assigned.

Notice that in our scenario a trivial envy-free
solution always exists that lets p; = oo for each
item j and does not assign any item to any buyer.

Many papers considered the unit demand case
in which d; = 1 for each consumer i. Arguably,
the multi-demand case, where d; > 1 for each
consumer 4, is more general and finds much more
applicability. To this aim, we can identify two
main multi-demand schemes. The first one is the

relazed multi-demand model, where each buyer 4
requests at most d; > 1 items, and the second
one is the sharp multi-demand model, where each
buyer i requests exactly d; > 1 items and, there-
fore, a bundle of size less than d; has no value for
buyer .

For relaxed multi-demand models, a standard
technique can reduce the problem to the unit
demand case in the following way: each buyer
i with demand d; is replaced by d; copies of
buyer ¢, each requesting a single item. However,
such a trick does not apply to the sharp demand
model. Moreover, as also pointed out in [2], the
sharp multi-demand model exhibits a property
that unit demand and relaxed multi-demand ones
do not posses. In fact, while in the latter model
any envy-free pricing is such that the price p; is
always at most the value of v;;, in the sharp de-
mand model, a buyer ¢ may pay an item j more
than her own valuation for that item, i.e., p; > v;;
and compensate her loss with profits from the
other items she gets (see section 3.1 of [2]). Such
a property, also called overpricing, clearly adds
an extra challenge to find an optimal revenue.

The sharp demand model is quite natural in
several settings. Consider, for instance, a sce-
nario in which a public organization has the need
of buying a fixed quantity of items in order to
reach a specific purpose (i.e. locations for offices,
cars for services, bandwidth, storage, or whatever
else), where each item might have a different val-
uation for the organization because of its size, re-
liability, position, etc. Yet, suppose a user wants
to store on a remote server a file of a given size s
and there is a memory storage vendor that sells
slots of fixed size ¢, where each cell might have
different features depending on the server loca-
tion and speed and then yielding different valua-
tions for the user. In this case, a number of items
smaller than [ﬂ has no value for the user. Sim-
ilar scenarios also apply to cloud computing. In
[2], the authors used the following applications
for the sharp multi-demand model. In TV (or ra-
dio) advertising [5], advertisers may request dif-
ferent lengths of advertising slots for their ads
programs. In banner (or newspaper) advertising,
advertisers may request different sizes or areas for
their displayed ads, which may be decomposed



into a number of base units. Also, consider a sce-
nario in which advertisers choose to display their
advertisement using medias (video, audio, anima-
tion) [1,6] that would usually need a fixed number
of positions, while text ads would need only one
position each. An example of formulation spon-
sored search using sharp multi-demands can be
found in [4]. Other results concerning the sharp
multi-demand model in the Bayesian setting can
be found in [3].

We consider the revenue maximization problem
with sharp multi-demand and limited supply. We
first prove that, for related valuations, the prob-
lem cannot be approximated to a factor O(m!~¢),
for any € > 0, unless P = NP and that such re-
sult is asymptotically tight. In fact we provide a
simple m-approximation algorithm even for unre-
lated valuations.

Our inapproximability proof relies on the pres-
ence of some buyers not being able to receive
any bundle of items in any envy-free outcome.
Thus, it becomes natural to ask oneself what hap-
pens for instances of the problem, that we call
proper, where no such pathological buyers exist.
For proper instances, we design an interesting 2-
approximation algorithm and show that the prob-
lem cannot be approximated to a factor 2 — € for
any 0 < € < 1 unless P = NP. Therefore, also
in this subcase, our results are tight. We remark
that it is possible to efficiently decide whether an
instance is proper. Moreover, if discarding useless
buyers is allowed, an instance can be made proper
in polynomial time, without worsening the value
of its optimal solution.
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