Weighted Calderón-Zygmund and Rellich inequalities in L^p

G. Metafune 1 , C. Spina 1, M. Sobajima 1

¹Dipartimento di Matematica e Fisica, Università del Salento, Italy

In 1956, Rellich proved the inequalities

$$\left(\frac{N(N-4)}{4}\right)^2 \int_{\mathbb{R}^N} |x|^{-4} |u|^2 \, dx \le \int_{\mathbb{R}^N} |\Delta u|^2 \, dx$$

for $N \neq 2$ and for every $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})$, see [10]. These inequalities have been then extended to L^p -norms: in 1996, Okazawa proved the validity of

$$\left(\frac{N}{p} - 2\right)^p \left(\frac{N}{p'}\right)^p \int_{\mathbb{R}^N} |x|^{-2p} |u|^p \, dx$$
$$\leq \int_{\mathbb{R}^N} |\Delta u|^p \, dx$$

for 1 (see [9] and also [5]) showing also the optimality of the constants.

Weighted Rellich inequalities have also been studied. In 1998, Davies and Hinz ([2, Theorem 12]) obtained for $N \geq 3$ and for $2 - \frac{N}{p} < \alpha < 2 - \frac{2}{p}$

$$C(N, p, \alpha) \int_{\mathbb{R}^N} |x|^{(\alpha - 2)p} |u|^p \, dx \tag{1}$$

$$\leq \int_{\mathbb{R}^N} |x|^{\alpha p} |\Delta u|^p \, dx$$

with the optimal constants

$$C(N, p, \alpha) = \left(\frac{N}{p} - 2 + \alpha\right)^p \left(\frac{N}{p'} - \alpha\right)^p.$$

Later Mitidieri showed that (1) holds in the wider range $2 - \frac{N}{p} < \alpha < N - \frac{N}{p}$ and with the same constants, see [7, Theorem 3.1].

In recent papers Ghoussoub and Moradifam and Caldiroli and Musina, see [4], [1], improved weighted Rellich inequalities for p = 2 by giving necessary and sufficient conditions on α for the validity of (1) and finding also the optimal constants $C(N, 2, \alpha)$. In particular in [1] it is proved that (1) is verified for p = 2 if and only if $\alpha \neq N/2 + n$, $\alpha \neq -N/2 + 2 - n$ for every $n \in \mathbb{N}_0$. This approch makes use of the so called Emden-Fowler transform which reduces the operator $|x|^{\alpha}\Delta$ in \mathbb{R}^N to a uniforly elliptic operator in the cylinder $\mathbb{R} \times S^{N-1}$ and Rellich inequalities to spectral inequalities for the Laplace Beltrami Δ_0 on S^{N-1} . We also refer to [4, Section 3] where results similar to [1] have been obtained under the restriction $\alpha \ge (4 - N)/2$ and with different methods.

In this paper we extend the results in [1], [4] to $1 \leq p \leq \infty$, computing also best constants in some cases. We show that (1) holds if and only if $\alpha \neq N/p' + n$, $\alpha \neq -N/p + 2 - n$ for every $n \in \mathbb{N}_0$. Moreover, we use Rellich inequalities to find necessary and sufficient conditions for the validity of weighted Calderón-Zygmund estimates when 1

$$\int_{\mathbb{R}^N} |x|^{\alpha p} |D^2 u|^p \, dx \le C \int_{\mathbb{R}^N} |x|^{\alpha p} |\Delta u|^p \, dx \qquad (2)$$

for $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})$.

Weighted Calderón-Zygmund inequalities are well-known in the literature, in the framework of singular integrals. In 1957 Stein (see [11]) proved the inequalities

$$\||x|^{\alpha}Tf\|_{p} \le C \||x|^{\alpha}f\|_{p} \tag{3}$$

for $1 , <math>-N/p < \alpha < N/p'$, where *T* is the Calderón-Zygmund kernel corresponding to the operator $D^2 \Delta^{-1}$. Subsequent generalizations of the above result can be found in the papers of Kree, Muckenhoupt and Wheeden (see [3], [8]) where more general kernels are treated. Taking $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})$ and setting $f = \Delta u$, inequalities (3) imply that

$$|||x|^{\alpha} D^2 u||_p \le C |||x|^{\alpha} \Delta u||_p.$$

However the last inequalities can hold also when (3) fail, that is outside of the range $-N/p < \alpha < N/p'$, since f has compact support whenever u has but the converse is clearly false. In particular, the condition $\alpha > -N/p$ is needed for the integrability of $|x|^{\alpha}Tf$ near the origin, whereas $\alpha < N/p'$ is needed for the integrability at infinity, if Tf behaves like $|x|^{-N}$. We find that (2) holds if and only if $\alpha \neq N/p' + n$ for every $n \in \mathbb{N}_0$ and $\alpha \neq -N/p + 2 - n$ for every $n \in \mathbb{N}, n \geq 2$.

We consider also more general operators

$$L = \Delta + c \frac{x}{|x|^2} \cdot \nabla - \frac{b}{|x|^2}$$

with $b, c \in \mathbb{C}$ and investigate the validity of weighted Rellich inequalities of the form

$$C(N, p, \alpha, b, c) \int_{\mathbb{R}^N} |x|^{(\alpha - 2)p} |u|^p dx$$

$$\leq \int_{\mathbb{R}^N} |x|^{\alpha p} |Lu|^p dx \qquad (4)$$

for $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})$ and $1 \leq p < \infty$. We prove necessary and sufficient conditions on α for the validity of (4) and, in certain cases, we explicitly compute the best constants.

REFERENCES

- P. Caldiroli, R. Musina:Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), no. 1-2, 147-164.
- E. B. Davies, A. M. Hinz: Explicit constants for Rellich inequalities in L^p(Ω), Math. Z., 227 n.3 (1998), 511-523.
- Paul Krée: Sur les multiplicateurs dans *FL^p* avec poids: Ann. Inst. Fourier, Grenoble, Vol. 16, N. 2 (1966), 91-121.
- N. Ghoussoub, A. Moradifam: Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1–57.
- 5. V. F. Kovalenko, M.A. Perelmuter, Ya. A. Semenov: Schrödinger operators with $L_w^{l/2}(\mathbb{R}^l)$ potentials, J. Math. Phy., 22, n.5 (1981), 1033-1044.
- G. Metafune, M. Sobajima, C. Spina: Weighted Calderón-Zygmund and Rellich inequalities in L^p, to appear on Mathematische Annalen, available online http://arxiv.org/abs/1309.1302.
- E. Mitidieri: A simple approach to Hardy inequalities, Mathematical Notes, 67 N. 4 (2000), 479-486.
- B. Muckenhoupt, R. Wheeden: Weighted Norm Inequalities for Singular and Fractional Integrals, Transactions of the America Mathematical Society, Vol. 161, (1971), 249-258.
- N. Okazawa: L^p-theory of Schrödinger operators with strongly singular potentials, Japan. J. Math., 22 (1996), 199-239.
- F. Rellich: Halbbeschränkte Differentialoperatoren höherer Ordnung, Proceedings of the International Congress of Mathematicians, Vol. III (1954), 243-250.
- E. M. Stein: Note on Singular integrals, Proc. Amer. Math. Soc., 8 (1957), 250-254.