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Correlated nuclear ground state
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The theoretical basis of the mean-field ap-
proach to the description of the stucture of the
atomic nucleus has been deeply studied in the
sixites of the past centuries [1]. This approach is
based on the Hartree-Fock (HF) theory for the de-
scription of the ground state of the system, and on
the Random Phase Approximation (RPA) theory
for the description of the excited states. Modern
applications of this approach are able to describe
with high accuracy ground [2] and excited state
properties [3,4].
The only input of these mean-field theories is

the nucleon-nucleon interaction. The interaction
used in these theories is called effective since is
not the interaction extracted by the study of the
two, and eventually, three nucleon systems, which
is instead called bare. This latter interaction has
a strongly repulsive core at short internucleonic
distances, and cannot be used in mean-field the-
ories because it would produce divergences.
The use of the bare interactions in nuclear

structure calculations requires to go beyond the
mean-field theories by considering many-body ef-
fects which are named correlations. The effects
not explicitly considered in mean-field theories,
the correlations, are taken into account by mod-
ifying the nucleon-nucleon interaction and in-
serted effectively in the values of its parameters.
We can classify the correlations in two different

cathegories. A first one is related to the short-
range physics, and these are the many-body ef-
fects which reduce the role of the strongly repul-
sive core. These type of correlations are well stud-
ied in the Correlated Basis Function (CBF) the-
ories, and the application of this theory to finite
nuclear systems indicate that, beyond a certain
nuclear size, these correlations are very similar
for each nucleus [5]. The second type of the cor-
relations are called of long-range and take into ac-
count the coupling of the mean-field states with
collective vibrations, phonons, of the nucleus.
In our work we propose a description of the

nuclear and excited states by considering explic-
itly long-range correlations. Our perspective is
to use the bare nucleon-nucleon interactions cor-
rected by the CBF short-range correlations. In

this manner both type of correlations would be
considered.

We start from the hypothesis that the nuclear
ground state can be described as linear com-
bination of Slater determinants containing one
particle-one hole (1p1h) excitations, as well as,
two particle-two hole (2p2h) correlations
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In the above equation, |Φ0〉 indicates the Slater
determinant of the mean-field approach, where
all the single particle states below the Fermi sur-
face are occupied and those above are empty. The
a represent the creation and annihilation opera-
tors, and the indexes i, j operate below the Fermi
surface and m,n above it.

We apply the Ritz variational principle [6] by
using the ansazt (1) for the nuclear ground state,
and we obtain a set of integro-differential equa-
tions. A first set of equations is obtained by mak-
ing the variations of the single particle states, and
produce expressions similar to those obtained in
the traditional HF approach [1,6]. These equa-
tions are implemented by those obtained by mak-
ing the variation on the A coeffiecients. The vari-
ation on the B coefficients produce equations in-
dependent of B. This means that our approach
is compatible with any value of the B, and we set
them to zero. The physical interpretation of this
result, is that 1p1h pairs describe excited states,
while the long-range correlations are produced
by the, virtual, coupling of these excited states
(phonons), and this is, at first order, described in
terms of 2p2h pairs.

We construct the excited states on top of the
anzatz (1). We attack the problem by using a
time dependent HF approach. We describe the
time evolution of the state (1) as
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The coefficients Cmi are determined by the vari-
ational equation
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|Ψ(t)〉 = 0 , (3)

where H is the nuclear hamiltonian. We evaluate
the above equation, by considering only the linear
terms in C, and we obtain the expression
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where we have indicated with ǫ the energy of the
single particle level. TheA and B coefficients con-
tain matrix elements of the interaction between
single particle states wheighted by the Aminj co-
effients of Eq. (1).

We search for a oscillating solution of the Cs

Cmi = Xmie
iωt + Ymie

−iωt . (5)

Inserting the expression (5) in (4), separating pos-
itive and negative frequencies, and considering
only linear terms in the frequency ω, we obtain a
set of equations for the X and Y coefficients
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The structure of the above equation is analogous
to that of the traditional RPA equations, where
~ω is the energy of the excited state, and Xω

nj and
Y ω
nj the amplitides of the ph components of the

excited state. The novelties of the new ground
state are contained in the structure of the A and
B matrix elements.

The work is in progress. We are now testing
the normalization and the closure relation for the
excited states, the conservation of the sum rules
and we are obtaining the expressions for the tran-
sition probabilities.
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