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Let A = A0 ⊕A1 be an associative superalgebra over a commutative unital ring of scalars R such that
1
2 ∈ R. An element a of A is said to be homogeneus (of degree i) if a ∈ Ai (and we write a = i). Let us
denote by A− the Lie superalgebra obtained from A via the Lie superbracket [a, b]s := ab− (−1)abba, for
all homogeneus elements a, b ∈ A (the expression extends over the rest of the elements by linearity). If A
has a superinvolution ∗, let K be the subalgebra of the Lie superalgebra A− consisting of skew elements
of A with respect to ∗, namely K := {a | a ∈ A, a∗ = −a}. When A is trivial, i.e. A1 = 0, A is nothing
but an associative algebra with involution and the Lie superbracket [ , ]s coincides with the usual Lie
bracket [ , ]. In this setting, an interesting question is to decide if crucial information on the algebraic
structure of A can be deduced from properties of A− or K. This interplay has been the subject of a good
deal of attention over the decades.

In the last years the relation between A, A− and K has been profusely investigated by several authors
for non-trivial superalgebras as well. The motivations for this line of research mainly come from the
classification of the finite-dimensional simple Lie superalgebras over an algebrically closed field of charac-
teristic zero given by Kac [6]. In fact, we can find in it examples that are superalgebras of skew elements
with respect to a superinvolution in a simple associative superalgebra or Lie superalgebras associated to
a simple associative superalgebra. This result suggests that the structure of A as associative superalgebra
and A− and K as Lie superalgebras could be related. In this direction, Gómez-Ambrosi and Shestakov
[5] studied the Lie structure of K when A is simple. Later these results were extended to the context
of prime and semiprime associative superalgebras in [3] and [?], respectively. More recently, Laliena and
Sacristán explored the structure of semiprime associative superalgebras with superinvolution under cer-
tain additional regularity condition on symmetric and skew elements ([9]) and when [K2, K2]s = 0 ([8]).
We notice that the Lie structure of simple and prime associative superalgebras without superinvolution
was previously studied by Montgomery ([12]) and Montaner ([11]), respectively.

On the other hand, one can consider the Jordan superalgebra A+ obtained from A via the circle
operation a ◦s b := ab + (−1)abba for all homogeneus elements a, b of A (also in this case, the expression
extends over the rest of the elements by linearity). When A is equipped with a superinvolution ∗, let
H := {a | a ∈ A, a∗ = a} be the subalgebra of the Jordan superalgebra A+ consisting of symmetric
elements of A with respect to ∗. In the Kac’s classification ([7]) of finite-dimensional simple Jordan
superalgebras over an algebrically closed field of characteristic zero we find examples of simple Jordan
superalgebras of the form A+ and of the form H(A, ∗), where A is a simple associative superalgebra (with
a superinvolution ∗ in the latter case). This is one of the reasons for which A+ and H have been the
subject of a good deal of attention as well (we refer, for instance, to [2] and [4]).

The goal of this paper is to investigate semiprime associative superalgebras with superinvolution
whose subspaces of skew elements or symmetric elements are Lie nilpotent or Lie solvable. We re-
call that a graded subspace S of a superalgebra A is said to be Lie nilpotent if, set [x1, . . . , xn]s :=
[[x1, . . . xn−1]s, xn]s for all n ≥ 2, there exists an integer m such that

[x1, . . . , xm]s = 0

for all x1, . . . , xm ∈ S, and Lie solvable if, set [x1, x2]◦s := [x1, x2]s and inductively

[x1, . . . , x2n+1 ]◦s := [[x1, . . . , x2n ]◦s, [x2n+1, . . . , x2n+1 ]◦s]s,

there exists an integer m such that
[x1, . . . , x2m+1 ]◦s = 0
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for all x1, . . . , x2m+1 ∈ S.
We notice that in every semiprime associative superalgebra A the intersection of all the prime ideals

of A is zero. Consequently A is a subdirect product of its prime images. If each prime image of A is
a central order in a simple superalgebra at most n2-dimensional over its centre, we say that A is S(n).
This definition is required to state the main result on Lie solvability condition.

Theorem 1. Let A be a non-trivial semiprime associative superalgebra over a commutative unital ring
of scalars R such that 1

2 ∈ R endowed with a superinvolution. If H is Lie solvable, then A is S(2).

We stress that if K is Lie solvable, so is H. Thus the result still holds by replacing H with K.
Furthermore it is true if H is Lie nilpotent as well: indeed, the latter fact implies that H is Lie solvable
(obviously, the same holds also for K, which has the structure of Lie superalgebra).

In the case in which H or K are Lie nilpotent, we are able to provide a characterization in terms of
identities satisfied by the symmetric or skew elements of A.

Theorem 2. Let A be a non-trivial semiprime associative superalgebra over a commutative unital ring
of scalars R such that 1

2 ∈ R endowed with a superinvolution. Then

(a) H is Lie nilpotent if, and only if, the elements of H commute;

(b) K is Lie nilpotent if, and only if, the elements of K commute.

Classically, this situation has been studied in the context of semiprime algebras with involution by
Giambruno and Sehgal (Theorem 1 of [1]) and Lee, Sehgal and Spinelli (Proposition 2.4 and 2.6 of [10],
although there the authors consider algebras over fields, the statements still hold for algebras over rings).
Their results can be summarized in the following

Theorem 3. Let A be a semiprime associative algebra over a commutative unital ring of scalars R such
that 1

2 ∈ R endowed with an involution. The following statements are equivalent:

(i) K is Lie nilpotent;

(ii) K is Lie solvable;

(iii) K is commutative.

Theorem 4. Let A be a semiprime associative algebra over a commutative unital ring of scalars R such
that 1

2 ∈ R endowed with an involution. Then

(a) H is Lie nilpotent if, and only if, H is commutative;

(b) H is Lie solvable if, and only if, H is Lie metabelian.

In particular, if H is Lie solvable, then A is S(2).

We notice that only a partial superanalogous of Theorem 3 is obtained. In fact, in non-trivial superal-
gebras setting the Lie solvability of K does not imply the Lie nilpotency of K, not even if the superalgebra
is simple. An easy example is provided by the superalgebra of (2 × 2)-matrices M1,1(F ) over a field F
of characteristic not 2 equipped with the transposition superinvolution. Furthermore, we cannot expect
that the Lie nilpotency of K or H forces them to be supercommutative (namely, [a, b]s = 0 for all a, b in
K or H).
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