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The object of our investigation has been the study
of existence, uniqueness, qualitative behaviour of
solutions of second order elliptic and parabolic
problems associated with operators whose coeffi-
cients can be unbounded or degenerate in some
points. In particular we studied some elliptic op-
erators with unbounded diffusion and drift coef-
ficients of the form

(s + |x|α)∆ + c|x|α−1
x

|x|
· ∇, 0 ≤ s ≤ 1.

We first considered the purely second order oper-
ator

L = (1 + |x|α)∆,

with α > 0, in Lp(RN , dx), and the related prob-
lems

ut − Lu = 0 u(0) = f ;

λu − ∆u = f, λ > 0.

Our analysis was inspired by a previous work
due to Fornaro and Lorenzi [1] where the authors
proved that, if α ≤ 2, then L generates an ana-
lytic semigroup in Lp, for 1 ≤ p ≤ ∞. Moreover,
if 1 < p < ∞, then

D(Lp) = {u ∈ Lp : a1/2∇u, aD2u ∈ Lp}

where a(x) = (1 + |x|α). Actually the authors
proved the same results for more general a satis-
fying a ≥ δ > 0 and |∇a| ≤ Ca1/2.
On the other hand some a-priori estimate for this
operators were known also for certain values of α
greater then 2. Indeed P. Kree, B. Muckenhoupt
and R. Wheeden ([2] and [7]) proved that

‖|x|αD2u‖p ≤ C‖|x|α∆u‖p

‖(1 + |x|α)D2u‖p ≤ C‖(1 + |x|α)∆u‖p

for 0 < α < N
p′

where p′ is the conjugate expo-
nent of p. Therefore we were expecting for a good
characterization of the domain for these values of
α.
We studied the case α > 2 in [3] where it is shown
that L generates a semigroup in Lp if and only if
p > N/(N −2). The semigroup is always analytic
but it is contractive if and only if p is greater than

or equal to (N + α − 2)/(N − 2). According to
the above a-priori estimates we gave an explicite
description of the domain for α < N

p′
. We proved

also that the resolvent of L is compact in Lp and
the spectrum consists of eigenvalues independent
of p.
We briefly outiline the main steps to obtain the
above results. Set

Dp,max(L) = {u ∈ W 2,p : (1 + |x|α)∆u ∈ Lp}

the maximal domain of L and L̂p = (L, D̂p) any

domain D̂p contained in the maximal domain, we
first proved that

(i) if N = 1, 2 and 1 ≤ p ≤ ∞

(ii) or N ≥ 3 and p ≤ N/(N − 2)

then ρ(L̂p) ∩ [0,∞[= ∅. We therefore focused on
the case N ≥ 3, p > N/(N − 2).
We observed that the equation −Lu = f is equiv-
alent to −∆u = f/(1+ |x|α) and then we studied
the integral operator

Tf(x) = CN

∫
RN

f(y) dy

(1 + |y|α)|x − y|N−2

and its gradient

Sf(x) = CN (N − 2)

∫
RN

f(y)(y − x) dy

(1 + |y|α)|x − y|N

The invertibility of L and many other properties
followed from some weighted estimates of T and
its gradient.
By using the maximum principle, we deduced
that, since L is invertible, then λ−L is invertible
for λ ≥ 0 and

(λ − L)−1f ≤ (−L)−1f

for f ≥ 0.
In such a way we proved that, if α > 2, N/(N −
2) < p < ∞ and λ ≥ 0, the operator λ − L is in-
vertible on Dp,max(L) and its inverse is a positive
operator. Moreover

‖(λ − L)−1‖ ≤ ‖T‖.

The estimate above only shows that the resolvent
is bounded on [0,∞[. This was not sufficient to
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apply the Hille-Yosida Theorem in order to prove
some results for the parabolic problem. By us-
ing variational methods and some Hardy-type in-
equalities, we proved that, for some values of α
(or p), L is a sectorial operator. The constant in
the Hardy inequality led to the limitation on α.
So we deduced, as partial result, that, if N ≥ 3,
p > N/(N − 2), 2 < α ≤ (p − 1)(N − 2) (or
p ≥ (N + α − 2)/(N − 2)), then (L,Dp,max(L))
generates a positive contractions semigroup in Lp.
If α < (p−1)(N−2) (or p > (N +α−2)/(N−2)),
the semigroup is also analytic.
This has been the starting point to prove, by ap-
plying a long iterative process and rescaling tech-
niques, generation of analytic semigroups for ev-
ery p > N/(N − 2).
Concerning the domain characterization, by the
weighted estimates of the operator T and by ap-
plying the classical Calderon-Zygmund estimate
to (1+ |x|α)u we deduced that, if α < N/p′, then

Dp,max(L) = Dp = {u ∈ Lp(RN ) :

(1 + |x|α−2)u, (1 + |x|α−1)∇u,

(1 + |x|α)D2u ∈ Lp(RN )}.

When α ≥ N/p′, Dp is a proper subset of
Dp,max(L).
In [4] and [8], by using Kohn-Nirenberg’s in-
equalities and ultracontractivity techniques due
to Wang and Bakry, we proved some kernel esti-
mates and we studied the asymptotic behaviour
of eigenvalues and eigenfunctions.

Next we considered the whole operators

L = (1 + |x|α)∆ + c|x|α−1(x/|x|)∇,

as before in Lp spaces with respect to the
Lebesgue measure. If α is less or equal than 2, the
operator belongs to the class of operators studied
in [1]. If α > 2, the drift term is not a small
perturbation of the principal part and therefore
the operator L cannot be studied with perturba-
tive methods starting from the case c = 0. In-
stead, we gave estimates of the fundamental so-
lution, depending on the parameter c, in order
to prove solvability. Also in this case we proved
that, if c > 2 − N , L generates a semigroup
in Lp if and only if p > N/(N − 2 + c). The
semigroup is always analytic but it is contrac-
tive if and only if p is greater than or equal to
(N + α − 2)/(N − 2 + c). The description of the
domain is given for α smaller than N/p′+c. Some
kernel estimates are proved as before, by using
Kohn-Nirenberg’s inequalities and ultracontrac-
tivity techniques.

The singular case s = 0 without drift (i.e. c = 0)

is treated in [5], where it is proved that L gener-
ates an analytic semigroup in Lp for values of p
depending on the parameter α.
Since the operator is degenerate both at 0 and ∞,
we studied separately the operators L1 = |x|α∆
in the ball BR and L2 = |x|α∆ in the exterior
domain Bc

R, both with Dirichlet boundary condi-
tions.
Concerning the operator L2, we observed that it
can be treated as the operator (1 + |x|α)∆ in
the whole space R

N . Generation results and do-
main description for this last operator were al-
ready known by [3] in the case α > 2 and by [1]
in the case α ≤ 2. It followed that L2 generates
an analytic semigroup for 1 < p < ∞ when α ≤ 2
and for N

N−2
< p < ∞ when α > 2, the restric-

tion on p being sharp.
The operator L1 is singular near the origin. How-
ever a generalization of the results of [1] allowed
to prove generation of analytic semigroup when
α ≥ 2, together with an explicit desciption of the
domain.
The case α < 2 required several steps. We first
proved that L1 is invertible and that its resol-
vent is positive. Then the bound on the resolvent
norm ‖(λ − L1)

−1‖ ≤ ‖L−1

1
‖ followed for λ > 0.

This however was not enough to obtain gener-
ation results by the classical Hille-Yosida The-
orem. The operator L1 = |x|α∆ is similar in

L
2N

N−2 , via the Kelvin transform, to the opera-
tor |x|4−α∆ defined on the exterior domain Bc

R.
Since the operator |x|4−α∆ generates an analytic
semigroup in Lp(Bc

R), p = (2N)/(N − 2), con-
sequently, L1 generates an analytic semigroup in
Lp(BR) for the same p. By interpolation we de-
duced analiticity for p ≥ 2N

N−2
. To conclude, an

extrapolation procedure based on the bounded-
ness of the resovent, scaling arguments and the
generation results for large p, allowed to prove
generation for every p > N

N−α . We point out that
the above restriction on p is sharp.
Glueing togehther the resolvents of L1 and L2 we
obtained the results for L.
Moreover, by applying techniques similar to those
working for the non-singular case, estimates for
the parabolic kernel are obtained.

As further development we are planning to re-
place the Laplacian with an elliptic operator of
the second order in the principal part. The so-
lution of this problem does not seem to be im-
mediate, neither for α less than or equal to 2.
Indeed the techniques applied in [1] are based on
homogeneus Calderon-Zygmund inequalities that
do not hold for more general pure second order
elliptic operators.
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