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Typically, problems in celestial mechanics
involve the Newtonian gravitational potential,
which is singular when two or more bodies (in-
tended as point masses) collide together.
In a seminal paper, R. McGehee introduced a

rescaling technique that regularizes the dynamics
of n-body gravitational problems. It consists of a
polar-type change of coordinates in the configu-
ration space, together with a suitable rescaling of
the momentum. This technique may be applied
to singular homogeneous potentials of any degree.
However, homogeneous potentials are not the

only interesting singular potentials that arise in
the applications. Logarithmic potentials appear
in several physical scenarios: in models of astro-
dynamics; in the dynamics of a charged particle
in a cylindrically symmetric electric field, and in
the mathematical theory of vortex filaments of an
ideal fluid. In addition, the logarithmic potential
V (x) = − log(|x|) may be considered a sort of
limit case for α → 0 of the homogeneous poten-
tials Vα(x) = |x|−α.
There are very few studies on the regularization

of the logarithmic potential, and they all treat the
planar case. In a collaboration with the Basque
Center for Applied Mathematics, we worked out
a McGhee-like technique for the regularization of
the one-body logarithmic dynamics on a sphere.
In this setting, a necessary condition in order to

have a collision with the singularity, or to reach its
antipodal point, is to have zero angular momen-
tum. In other words, the only trajectories that
reach the singularity are those that coincide with
the meridians, when the singularity is at one of
the poles. In effect, when one restricts this prob-
lem to non-singular orbits, it is easy to see that
the problem is integrable.
We show that in this problem there is much

more regularity than the presence of the singular-
ity would allow us to suspect. In fact, the McGe-
hee regularization lets us prove the following theo-
rem, based on the notion of collision-transmission

trajectories.

Definition 1. Let (φV , θV ) be the coordinates of

the point interacting with the singular logarithmic

potential and let γ(t) = (φ, θ)(t) : [0, Ts) → S be a

collision solution ending in the singularity at time

Ts. We define as collision-transmission trajectory
the path γ̄ : [0, 2Ts] → S given by

γ̄(t) :=















γ(t), t ∈ [0, Ts)
(φV , θV ) t = Ts

(2φV − φ(2Ts − t),
2θV − θ(2Ts − t)) t ∈ (Ts, 2Ts]

Based on the previous definition, we prove that:

Theorem 1. The flow obtained by extending the

collision solutions with the collision-transmission

trajectory is continuous with respect to initial data

anywhere out of the vortex and of the antipodal

points.

In a different paper we return to the plane, but
we study a multi-body problem governed by the
equation

Γj q̈j(σ) +
∑

k 6=j

Γk

2π

qj(σ)− qk(σ)

‖qj(σ)− qk(σ)‖
2
= 0,

j = 1, . . . N

where Γj is the strength of the logarithmic po-
tential associated to the j−th body.

This problem is amenable to analysis by re-
stricting the investigation to the motions that re-
spect some symmetry constraint. In particular we
have studied the case where one body of strength
γ is left still at the origin of the coordinate system,
and four other bodies having the same strength
move along orbits equivariant with respect to the
Klein group D2, which has order 4.

As for the spherical problem, we are able to
regularize the total collision that happens when
all five bodies collide simultaneously. We are also
able to define collision-transmission orbits for the
binary collisions that occur in this problem for
generic initial conditions. In this way the flow
can be defined for arbitrarily long times, and we
study the conditions under which the dynamics
is bounded or unbounded, that is whether or not
there exist orbits that reach infinity.
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Figure 1. Surfaces of constant kinetic energy in

McGehee coordinates for the logarithmic one-body

problem on a sphere.


