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Stressed Horizontal Convection

J. Hazewinkel, 1 F. Paparella 2 and W. R. Young1

1Scripps Institution of Oceanography, La Jolla, USA

2Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Italy

Figure 1. Buoyancy and streamfunction of three

numerical solutions for progressively higher surface

stress. The second and the third solution show re-

gions of thermally indirect circulation.

The most common convective configuration is
that where a fluid is confined between two plane,
parallel, horizontal plates, kept at constant tem-
perature. If the lower plate is sufficiently warmer
than the upper plate the system is unstable to in-
finitesimal perturbations, and buoyancy changes
induced by the temperature fluctuations induce
convective motions into the fluid. This is the
Rayleigh-Bnard set-up, and it is by far the most
commonly studied case of convection.
However, most cases of convection in the

real world are ill-approximated by the Rayleigh-
Benard set-up. For example, the oceans are
heated at the equator and cooled at the poles,
but all heat exchanges happen at the surface of
the water, which is to a very good approximation
a surface of constant gravitational potential.
A convective set-up that heat and cools the

working fluid at a surface of constant gravita-
tional potential, in a container which, at the other
boundaries is perfectly insulated, is called hori-

zontal convection.

Although the horizontal convection set-up is
perfectly able, at sufficiently high Rayleigh num-
bers, to trigger complicated, non-periodic, inpre-
dictable motion in the fluid, it can never achieve
a truly turbulent state, in the sense specified by
Kolmogorov’s theory of turbulence, because of
the rigorous inequality that we proved in 2002:

ε < κH
−1

bmax (1)

Here ε is the kinetic energy dissipated by the fluid
per unit time and mass, κ is the thermal con-
duction coefficient of the fluid, H is the depth of
the container, and bmax is the maximum buoy-
ancy difference in the forcing boundary condi-
tions. (Buoyancy is a convenient way to measure
density fluctuations, and has the dimensions of
an acceleration. Here bmax plays the same role
played by the plates temperature difference in
Rayleigh-Bnard convection.)

Horizontal convection is therefore non-
turbulent because if H → ∞, or κ → 0 (together
with the fluid viscosity), then the kinetic energy
dissipation ε → 0, even if the forcing term bmax

is non-zero. In Kolmogorov’s turbulence, on the
other hand, the kinetic energy dissipation reaches
a finite limit when, at constant forcing, the size
of the domain is increased without bound, or,
equivalently, the viscosity of the fluid is reduced
to arbitrarily small values.

The non-turbulence of horizontal convection is
more than a mere curiosity, because all the quan-
tities in the inequality (1) are readily measured
in the ocean. It turns out that the observed ki-
netic energy dissipation is orders of magnitude
larger than what is allowed by (1). Therefore, the
meridional overturning circulation of the world’s
ocean cannot be simply understood in terms of
latitudinal differences of heating. Other factors
must be at work, and they must either account
for the near-totality of the energy budget of the
ocean, or trigger an amplification of the merid-
ional heat transport that would not be possible
by convection alone.

In the most recent work we have explored the
effect of a surface stress (produced by the wind,
for example) on a horizontal convective set-up.



2

In an idealized geometry, we arrive at the exact
result

Hε < κ∆b̄+ τ s · us (2)

where ∆b̄ is the difference between the horizon-
tally averaged buoyancy at the top and at the
bottom of the container, us is the velocity of
the fluid at the surface, and τ s is the mechan-
ical stress externally imposed at the surface. It
is then evident that, potentially, the action of the
wind can bypass the severe constraint on kinetic
energy dissipation imposed by (1).

We have further explored the problem by
means of two-dimensional numerical simulations
of the Boussinesq equations for convection. The
interesting case is when the direction of the
steady applied surface stress opposes the sense
of the buoyancy driven flow. We obtain two-
dimensional numerical solutions showing a regime
in which there is an upper cell with thermally in-
direct circulation (buoyant fluid is pushed down-
wards by the applied stress and heavy fluid is el-
evated), and a second deep cell with thermally
direct circulation. In this two-cell regime the
driving mechanisms are competitive in the sense
that neither dominates the flow. A scaling argu-
ment shows that this balance requires that surface
stress vary as the horizontal Rayleigh number to
the three-fifths power.

Modern descriptive studies emphasize that the
Earths oceans have a multi-cell overturning struc-
ture, and that the shallow wind-driven cell, which
has the greatest vertical temperature differences,
is responsible for most of the heat transport (Tal-
ley 2003). We must cautiously interpret the
oceanographic application of the very idealized
problem of stressed horizontal convection. But
we cannot resist remarking that the two-cell over-
turning pattern in our solutions is a feature of the
ocean circulation, and probably for the same rea-
son: stress forcing drives the shallow cell, while
the deeper cell is associated with bottom-water
formation and upwelling.
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