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Since its first definition given by E. de Giorgi in 1954 in [10], the notion of variation of a function of
several real variables (which is called perimeter in the relevant case of characteristic functions) appeared
to be closely related to the short time behaviour of the heat semigroup. If u : Rn → R is in L1(Rn) then
its variation is defined as

|Du|(Rn) = sup
{∫

Rn

udiv φdx : φ ∈ C1
c (Rn,Rn), ‖φ‖∞ ≤ 1

}
(1)

and the condition |Du|(Rn) < +∞ is equivalent to saying that the distributional gradient of u is a Rn-
valued Radon measure. In this case, we write Du = σu|Du| and u is of bounded variation, u ∈ BV (Rn)
for short, see [3]. Given u ∈ L1(Rn), denote by Wt the heat semigroup in Rn, i.e., the function

w(x, t) = Wtu(x) =
1

(4πt)n/2

∫
Rn

u(y) exp
{ |x− y|2

4t

}
dy (2)

is the solution of the Cauchy problem in Rn × (0,+∞) wt = ∆w, w(x, 0) = u(x). Then, the equality

|Du|(Rn) = lim
t→0

∫
Rn

|∇Wtu(x)|dx (3)

holds, in the sense that the right hand side in the above formula is finite if and only if u ∈ BV (Rn).
Another interesting connection between the variation of a function and the heat semigroup is shown by
the formula

|Du|(Rn) = lim
t→0

√
π

2
√
t

∫
Rn×Rn

|u(x)− u(y)| exp
{ |x− y|2

4t

}
dxdy, (4)

which for u characteristic function has been pointed out by M. Ledoux in 1994 in [12], in connection
with the isoperimetric inequality. Both these connections between heat semigroup and the variation of
a function have been deepened in the last few years in various contexts, such as Riemannian manifolds
[9], [14], subsets of Euclidean spaces [7] and Wiener spaces, i.e., (infinite dimensional) Banach or Hilbert
spaces endowed with suitable differential structures and Gaussian measures. In this last framework,
which is strongly related to stochastic analysis, the heat semigroup is replaced by the Ornstein-Uhlenbeck
semigroup whose invariant measure is the given Gaussian measure. In this sense, it appears to be the
most natural semigroup to consider. In these situations all the quantities can be introduced through
intrinsic variants of (1), (2), but relations (3), (4) do not follow from the Euclidean case.

In the paper [8] the validity of (3), (4) is addressed in the case of Carnot groups. A Carnot group
G (named after Nicolas Léonard Sadi Carnot because of the connections of such an algebraic structure
with the rational thermodynamics) is Rn endowed with a group operation ◦ and a dilation operation
D(λ)x = (λω1x1, . . . , λ

ωnxn). (Q =
∑
j ωj is called homogeneous dimension). Moreover, (τxf)(y) =

f(x ◦ y) is the (left) translation, and a differential operator P is left-invariant if P (τf) = τ(Pf). Assume
that ω1 = . . . = ωq for some 1 < q < n and there are left-invariant differential operators X1, . . . Xq such
that Xj(0) = ∂xj and the Lie algebra generated by the Xj is Rn (Hörmander condition). G is of step 2
if Rn = span {Xj , [Xi, Xj ]}. Let L =

∑
j X

2
j be the (sub)laplacean, ∂t − L the heat operator and

Wtu(x) =

∫
Rn

h(t, y−1 ◦ x)u(y)dy (5)

the heat semigroup. Here h is the heat kernel in G. The main results in [8] are the following:

Theorem 1. There is c(G) ≥ 0 such that |DGu|(Rn) ≤ (1 + c(G))|DGu|(Rn). Moreover, if G is step 2,
setting π(x1, . . . , xn) = (x1, . . . , xq) and

φG(ν) =

∫
TG(ν)

h(1, x)dx, ν ∈ Rq, TG(ν) = {x ∈ Rn : 〈π(x), ν〉 = 0}
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the following equality holds for every u ∈ BV (G):∫
Rn

φG(σu)d |DGu| = lim
t→0

1

4
√
t

∫
Rn×Rn

|u(x)− u(y)|h(t, y−1 ◦ x)dxdy. (6)

Functions of bounded variation can be defined also in an infinite dimensional separable Banach space
X endowed with a Gaussian measure γ = N (0, Q) (centred normal distribution with covariance Q) and
a differential strucure coming from either the Malliavin calculus, see [11], [4], [5], [6] or a kind of Fréchet
derivative if X is a Hilbert space, see [1]. These two points of view are related to different stochastic
processes that are solutions of a particular stochastic differential equations and give rise to different
related Orstein-Uhlenbeck semigroups. Problems analogous to (3) can be posed in this context. Let X
be a Hilbert with inner product 〈·, ·〉, norm | · |, an orthonormal basis (ek) such that Qek = λkek for all
k ≥ 1, with λk a nonincreasing sequence of strictly positive numbers such that

∑
k λk < ∞. For k ≥ 1,

f : X → R, define the partial derivatives

Dkf(x) = lim
t→0

f(x+ tek)− f(x)

t
(7)

(provided that the limit exists) and, by linearity, the gradient operator D : FC1
b (X)→ FCb(X,X)2. The

gradient turns out to be a closable operator with respect to the topologies Lp(X, γ) and Lp(X, γ,X) for
every p ≥ 1. This leads to the integration by parts formula∫

X

ψDkϕdγ = −
∫
X

ϕD∗kψdγ, where D∗kϕ = Dkϕ−
xk
λk
ϕ. (8)

Accordingly, the total variation of a function u ∈ L2(X, γ) can be defined as

|Dγu|(X) = sup
{∫

X

u
[∑
k

D∗kφk

]
dγ, φ ∈ FC1

b (X,X), |φ(x)| ≤ 1 ∀x ∈ X
}
. (9)

As in the Euclidean case (but with a different proof) we know that if Dγu|(X) < ∞ then there is a
X-valued measure νu on X such that∫

X

u(x)Dkϕ(x)dγ = −
∫
X

ϕ(x)dνuk +
1

λk

∫
X

xku(x)ϕ(x)dγ, ϕ ∈ FC1
b (X),

with νuk = 〈νu, ek〉X . In this case, introducing the semigroup

Rtf(x) =

∫
X

f(y)dN (etAx,Qt)(y) =

∫
X

f(etAx+ y)dN (0, Qt)(y), f ∈ Bb(X), (10)

where

Qt =

∫ t

0

e2sAds = −1

2
A−1(1− e2tA) for A = −1

2
Q−1,

N (0, Qt)
w∗

−−→ N (0, Q) = γ as t→∞, so that γ is invariant for Rt. Then, u ∈ BVX(X, γ) if and only if

L(u) := lim
t↓0

∫
X

|e−tADRtu|dγ <∞ (11)

and in this case L(u) = |Dγu|(X). The semigroup Rt comes from the stochastic differential equation
dξ = AXdt+ dW (t), ξ(0) = x ∈ X, where W is a cylindrical Brownian motion. More generally, in the
paper [2] the case of a log-concave measure µ is considered. In this case the starting stochastic equation
is dξ = (Aξ −DU(ξ))dt+ dW (t), ξ(0) = x, where A and W are as above and the potential U belongs
to C3(X), is convex, and D2U , D3U are uniformly continuous and bounded. Consider X endowed with
the same differential structure and the probability measure µ(dx) = Z−1e−2U(x)γ(dx), where Z is the
normalisation constant. Then, related to the above SDE is the semigroup Ptϕ(x) = E[ϕ(X(t, x))], ϕ
bounded and borel on X, and the BV (X,µ) space can be introduced through the variation

Dµu(X) = sup

{∫
X

〈u(x),divµφ(x)〉µ(dx) : ∈ FC1
b (X;X), |φ(x)| ≤ 1

}
. (12)

where D∗kϕ = −Dkϕ− ϕDk log ρ+ 1
λk
xk ϕ for ρ = e−U . As before, u ∈ BV (X,µ) iff Dµu(X) <∞.

2FCk
b (X) is the space of the cylindrical real functions on X, i.e., φ ∈ FCk

b (X) if there are m ∈ N, x∗1, . . . x∗m ∈ X∗ and

f ∈ FCk
b (R

m) such that φ(x) = f(〈x, x∗1〉, . . . , 〈x, x∗m〉).
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Theorem 2. A function u ∈ L2(X,µ) belongs to BV (X,µ) if and only if there exists a vector measure
νu such that∫

X

u(x)D∗kϕ(x)µ(dx) =

∫
X

ϕ(x)νuk (dx), ∀ϕ ∈ C1
b (X), k ∈ N. (13)

In this case, the following equality holds:

lim
t→0

∫
X

|DPtu|dµ = |Dµu|(X). (14)

As a final remark, let us point out that the main result in [14], [9] has recently been generalised to a
wider class of Riemannian manifolds by B. Güneysu and the author, and that the results briefly described
here, in spite of their analogies, require in each case different (and in some cases very different) proofs.
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