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In classical nonlinear field equations certain
classes of localized solutions are interpreted as
particle-like excitations, when they are related to
the existence of a topological index, which pre-
vents the decaying into a superposition of elemen-
tary wave-like particles. For this reason such so-
lutions are known as topological solitons. A great
variety of field models admitting topological soli-
tons have been studied (monopoles, skyrmions,
instantons and vortices), playing an important
role in High Energy Physics [1,2], General Rela-
tivity [3], as well as in Condensed Matter Physics
[4]. A special interest deserves a 3D nonlinear
sigma model, called Skyrme - Faddeev model [5],
which it was proved [2] to be a special subcase
of the pure quantum SU (2)-Yang-Mills theory in
the infrared limit. Imposing suitable boundary
conditions to the field configurations, the homo-
topy group of the theory results π3

(
S2

)
= Z

and one can conclude that all solutions of the
E.-L. equations are labelled by the integer Hopf
index Q. It provides the linking number of the
pre-images of two independent points on the tar-
get space S2. Numerical calculations [6] have
produced a comprehensive analysis of topological
solitons with 1 ≤ Q ≤ 16, proving the existence
of local energy minima of knotted toroidal shape,
possibly many times tangled (Q = 7 corresponds
to a trifoil knot). Global analytical considera-
tions [7] have shown the bounded from below by
SSF ≥ C π2 ρ |Q|3/4. Its main consequence
is that vortices of higher topological charge are
metastable configurations. Finally the character-
istic size of a generic but stable perturbation is
1
ρ ≤ Rknot ≤

√
2
ρ . However, also space extended

structures were considered in [8] and in [9]. Later
[10] it was shown that collections of localized ob-
jects may condensate in order to form periodic
structures in the space. Moreover , as pointed
out in [8,10] the appearance of extended multi-
sheeted structures may be energetically more fa-
vorable. Thus, the quest for periodic solutions
(possibly exact) for the Skyrme–Faddeev model
becomes more compelling. On the other hand,
in a series of papers [11] it was shown that one

may obtain completely integrable sub-systems,
by adding certain differential constraints to the
model. The integrability corresponds to the ex-
istence of infinitely many local conservation laws
for the sub-system. Here we report the results
contained in the article [12].

We analyze the 4-dimensional relativistic gen-
eralization of the Skyrme - Faddeev model in
the space endowed with the pseudo-riemannian
metric diag (gi) = (+,−,−,−). The unimod-

ular vector-field in polar representation ~φ =
(sinw cosu, sinw sinu, cosw) is determined by
the Lagrangian density

Lp =
1

32π2

{
wµw

µ + sin2 w [uµu
µ−

ε (wµw
µuνu

ν − wµwνuµuν)]} ,
where ε > 0 is the breaking-scale parame-
ter of the model. The symmetry group is(
R4 o SO (3, 1)

)
⊗ SO (3).

A first observation comes from the assumption
w = const, thus the above system drastically re-
duces to the system given by the d’Alembert and
the homogeneous Eikonal equations

∂µu
µ = 0, uνu

ν = 0,

the general solution of which is in the implicit
form

G (u,Aµ (u)xµ, Bµ (u)xµ) = 0,

AµA
µ = BµB

µ = AµB
µ = 0,

with G, Aµ and Bµ arbitrary real regular func-
tions [13]. The process to provide explicit form
for u may leads to multi-valued solutions, like as
for shock waves. The corresponding differentia-
bility singularity in the ~φ field describes a type of
a domain wall.

A more general reduction can be obtained by
imposing

wµu
µ = 0, uνu

ν = α (α = constant ∈ R) .

Then, the equations for the S-F model reduce to
the equations

∂µu
µ = 0, uνu

ν = α, wµu
µ = 0,

∂µw
µ = α

2
sin(2w)

1−εα sin2 w
(1 + εwµwµ), (0.1)
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which are highly nonlinear for the w field. Here
we notice that the eikonal condition above were
imposed by in [11], after different kinds of consid-
erations. The general solution of the d’Alembert-
Eikonal sub-system for u is given in implicit form
by [13]

u = Aµ (τ)xµ +R1 (τ) ,

Bµ (τ)xµ +R2 (τ) = 0,

AµA
µ = a, AµB

µ = A′µB
µ = BµB

µ = 0,

where the function τ is implicitly defined by the
second relation and the arbitrary real regular
functions Aµ, Bµ, Ri satisfy the constraints in
the third line.

Alternatively, one can set to zero the coeffi-
cients of all functions of w in the Euler-Lagrange
equations and select the most interesting reduc-
tions. Among them we will consider the reduced
S-F system, which is the set of equations

∂µw
µ = 0, wµw

µ = −ε, uµwµ = 0,

uν∂µ(wµuν − wνuµ) = 0,

ε∂µu
µ + wν∂µ(uµwν − uνwµ) = 0.

The first two equations in are the d’Alembert-
Eikonal system, whose general solution was
shown above. The third one can be interpreted
as an orthogonality condition among the gradi-
ents of the two fields. The last equation can be
proved to just an identity, while the fourth one
is a quadratic differential constraint among the
derivatives of the function u, which can be writ-
ten as

aµw
µ = 0 with a = uνuν ,

Summarizing, the above overdetermined sys-
tem describes completely the reduced Skyrme–
Faddeev system. The compatibility conditions
for the d’Alembert-Eikonal system subsystem is is
well known Monge-Ampére equation Det [wij ] =
0. The compatibility conditions for u are

(w2
s − ε)umukwkm + (ukwk)2wmm = 2uswsumwkwkm,

4ukwkuswsp(wmwpm − wpwmm) + 2(uswmwsm)2 +

(usws)
2(wmmwpp − w2

pm) = 2(w2
p − ε)(uswsm)2.

Then, a special class of solutions for u is given by

u = F [w1, w2, w3] .

Looking for the simplest generalization of the
plane - wave solutions, one assumes that w =
Θ [θ] , u = Φ [θ]+θ̃, where θ = αµx

µ (the phase)

and θ̃ = βµx
µ ( the pseudo-phase). Using the

conservation laws, the equations of motion reduce
to only one ODE in the independent phase θ for
the auxiliary function ψ = sin Θ, given by

ψ2
θ =

64(ψ − 1) (ψ −A1) (ψ −A2)

λ2Bψ1 (ψ1 − ψ)
,

where all other quantities are parameters related
to the initial data. The general solution of the
above equation is given in terms of incomplete el-
liptic integrals of third kind, leading to a large
zoo of solitonic and periodic solutions. One of
them is represented in the original ~φ variable in
Fig. 1. These solutions mimic the spin wave con-
figurations called cyclon and extra-cyclon in mul-
tiferroic materials [14].
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