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In recent decades, the study of Hamiltonian
many–body systems has undergone great devel-
opment. These systems are indeed ubiquitous
in many different fields of science. In this con-
text, one of the most remarkable examples is pro-
vided by the Fermi–Pasta–Ulam (FPU) system
[1]. It has been intensively studied since its pro-
posal (see [2] for a review), and still represents an
invaluable model for studying nonlinear phenom-
ena.
A recent series of papers [3–7] has been devoted

to the stability properties of an interesting class
of solutions admitted by FPU–β system with pe-
riodic boundary conditions: the one–mode solu-

tions (OMS) [8–10]. These are exact solutions,
usually referred to by means of the values of the
mode number n = N
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N is the number of the particles of the system.
These modes are named equivalently (as in the
present paper)π/2, 2π/3, π, etc.
In [6], the existence of a new stability thresh-

old ǫ2(N), apart the well–known one of low en-
ergy ǫ1(N), has been discovered for the π/2 mode.
Indeed, on increase of the energy density ǫ, the
system experiences an abrupt transition from the
region of chaotic behaviour to a region where the
nonlinear mode solution becomes again stable.
Technically, we have used a global indicator in-
troduced in [5,6], i.e. the ratio ρ between the
standard deviation and the first moment of the
absolute value of the relevant variable for a given
probability distribution. For a Gaussian distri-
bution, ρ =

√

π/2. This indicator estimates the
deviation of a generic assigned distribution from
the Gaussian behaviour for any value of the exci-
tation energy density. It is a function of the dy-
namical variables of the configuration space only
and its usefulness relies on the fact that is model–
independent. By means of this indicator in [5,6]
we studied the stability of the π and π/2–modes
as functions of the energy density.
The aim of our research is to explore the sta-

tistical properties of the FPU–β chain, following
the orbits of the π/2 one–mode solutions.

In the last years, a new theoretical framework,
called nonextensive statistical mechanics, has ap-
peared for describing the thermostatistics of sys-
tems typically exhibiting long–range correlations,
(asymptotic) scale invariance, multifractality, etc.
[11,12]. The nonextensive scenario generalizes the
classical Boltzmann–Gibbs (BG) statistics in the
sense that it applies to non ergodic, e.g. weakly
chaotic, systems (for a regularly updated bibliog-
raphy, see [13]). The entropy on which it is based
reads

Sq = K
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∑W
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(S1 ≡ SBG = −K
W
∑

i=1

pi ln pi)

whereW is the total number of microscopic states
of the system. This entropy, under suitable con-
straints, is extremized by a q–Gaussian distri-

bution ∝ eq(−βqx
2) =

[

1− (1− q)βqx
2
]1/(1−q)

,
with βq > 0. Sq is nonadditive, but for special
values of the parameter q can be extensive, ac-
cording to the prescription of Clausius [12]. A
link between generalized entropies and number
theory has been found [14]. In particular, the
entropy Sq has been related to the classical Rie-
mann zeta function.

A connection between the weakly chaotic dy-
namics of the model and nonextensive statistical
mechanics was first established in [5] in the spe-
cific case of the π mode, for initial conditions in a
narrow region of the phase space. This result has
been also confirmed, for the same modal solution,
by a subsequent analysis [15].

Recently [16] [M. Leo, R. A. Leo, P. Tempesta
and C. Tsallis, Phys. Rev. E 85, 031149 (2012]
we have shown that striking evidence exists of the
existence, for the π/2 mode, of quasi–stationary
states whose thermostatistics is governed by a
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long standing q–Gaussian distribution for a con-
siderable range of the energy density. This is
achieved by performing an accurate analysis of
a set of suitable observables associated with the
evolution of the system. More precisely, for val-
ues of the energy density between ǫ1 and ǫ2, up to
values very close to ǫ2, the numerical distribution
is fitted with a high accuracy by a q–Gaussian
distribution, for values of N approximately up
to 100, and very large integration times. Inter-
estingly enough, the distributions found in our
analysis are extremely stable, i.e, they remain q–
Gaussian without converting into a Gaussian, or
any different one. For N very large, q approaches
1, hence the q–Gaussian distribution essentially
recovers the normal one.
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