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Summary Finite difference method is employed to investigate Dixon–like binomial
sums. Several identities are established which extend the alternating cubic sums of
Dixon and Vosmansky.

1. Introduction and Motivation

Let ∆ be the usual difference operator with the unit increment. For a real or
complex function f(τ ), the finite differences of order n can be calculated through
the following Newton–Gregory formula (cf. Graham et al [7, §5.3])

∆nf(τ ) =
n∑

k=0

(−1)n+k

(
n

k

)
f(τ + k). (1)

When f(τ ) is a polynomial of degree m ≤ n, then ∆nf(τ ) vanishes for 0 ≤ m < n
and otherwise, equals m! times the leading coefficient of f(τ ) for m = n. These
useful properties have recently been utilized by the author [3,4] to evaluate several
Hankel determinants and to give elementary proofs for the convolution identities of
Abel and Hagen–Rothe.

By employing the finite difference method further, we shall investigate the alter-
nating binomial sums of the following form

Un(λ, ε|y) :=
n∑

k=0

(−1)k

(
n

k

)(
k + y

n + ε

)(
k − y + λ

n + ε

)
(2)

where λ, ε ∈ Z, n ∈ N0 and y is an indeterminate. This has partially been motivated
by the recent work due to Gould–Quaintance [6], who obtained a closed formula for
the case n = 2m and ε = 1+λ, extending an earlier result found by Vosmansky [9].
The the binomial sum displayed in (2) will be said “Dixon–like” because in terms
of hypergeometric series (see section 5), it becomes “almost–poised”, just like the
Dixon–sum, which is well–poised 3F2-series.

The polynomial Un(λ, ε|y) is of even degree ≤ n+2ε in variable y. This is disguised
in the binomial sum (2), even though it will be almost evident to see from another
expression (3). Because the strategy for us to find summation formulae will start
from (2), it is necessary to determine universally the precise degree of Un(λ, ε|y) as
a polynomial of y in an independent manner.

This can be done by finite differences. Replacing y by x + λ/2, we have

Un(λ, ε|x + λ/2) =
n∑

k=0

(−1)k

(
n

k

)(
k + x + λ

2

n + ε

)(
k − x + λ

2

n + ε

)

which is an even function in x and can consequently be considered as a polynomial
in x2. Observe that the coefficient of x2` in

(
k+x+ λ

2
n+ε

)(
k−x+ λ

2
n+ε

)
is a polynomial of

degree 2(n + ε − `) in k that will be annihilated by the finite differences of order
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n when ` > ε + n
2 because the polynomial degree 2(n + ε − `) is, in this case, less

than the difference order n. Therefore Un(λ, ε|x + λ/2) results in a polynomial of
even degree ≤ n + 2ε in x which confirms that Un(λ, ε|y) has also the same even
degree ≤ n + 2ε in the variable y.

According to the fundamental theorem of algebra, we shall use the following algo-
rithm to prove the binomial identities presented throughout the paper.

• Let Ω(y) denote the binomial sum. Find out the polynomial degree of Ω(y)
and the zeros of Ω(y).

• By means of informed observation, figure out ω(y), which is also a polynomial
in y with the same degree and the same zeros as Ω(y).

• Determine the constant β such that βω(y) results in the desired closed form
for our summation Ω(y).

We illustrate this procedure by offering the following new proof of the binomial
identity below found by Gould–Quaintance [6, Theorem 2.2] through the creative
telescoping algorithm of Zeilberger [8].

Theorem 1 (m ∈ N0 and λ ∈ Z).

U2m(λ, λ + 1|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ + 1

)(
k − y + λ

2m + λ + 1

)

=

(
2m
m

)
(
1+2m+λ

m

)
(

y

m + λ + 1

)(
λ − y

m + λ + 1

)
.

When λ = −1, this theorem recovers the identity found by Vosmansky [9]. By
means of the generating function method, Carlitz et al [2] presented a direct proof.

Proof. Define the polynomial by the binomial sum on the left hand side

F (y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ + 1

)(
k − y + λ

2m + λ + 1

)
.

This is a polynomial of degree 2 + 2m + 2λ in y. In order to evaluate F (y), we
first examine the case λ < 0. For i = 0, 1, · · · , m + λ, we assert that F (i) = 0
because each binomial term appeared in F (i) is equal to zero. Otherwise, we would
simultaneously have both 1 + 2m + λ ≤ k + i and k − i + λ < 0 which lead to
i > m + λ. In view of the symmetry F (y) = F (λ− y), we find that all the zeros of
F (y) are given by {i, λ − i : 0 ≤ i ≤ m + λ}. Observing further that the binomial
product

(
y

m+λ+1

)(
λ−y

m+λ+1

)
has the same zeros as F (y), there must exist a constant

β such that

F (y) = β

(
y

m + λ + 1

)(
λ − y

m + λ + 1

)
with β =

(
2m
m

)
(
1+2m+λ

m

)

where β has been determined by letting y = 1+m+λ in the last equation which is
facilitated by the fact that there is only one term corresponding to k = m survived
in the binomial sum F (1 + m + λ).

When λ ≥ 0, consider similarly the fraction F(y) = F (y)

( y
λ+1)(λ−y

λ+1)
. Following the same

procedure as that for F (y), we can show that F(y) is a polynomial of degree 2m
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with all the zeros being {i, λ − i : 1 + λ ≤ i ≤ m + λ}. Determining the constant
factor at the same point y = 1 + m + λ, we arrive at the identity displayed in
Theorem 1 also when λ > 0.

Summing up, we have confirmed the binomial identity stated in Theorem 1. �

In the next two sections, we are going to establish ten further similar identities for
the binomial sums displayed in (2) that are equally distributed in Sections 2 and
3 according to the parity of n. Except for Theorem 9 which corresponds to the
case ε = 1 + λ, all the other nine identities are believed to be new because they
do not belong to the classical hierarchy of well–poised hypergeometric series. Then
in the fourth section, we shall transform (2), by means of the Leibniz rule of finite
differences for the product of two functions, into another class of binomial sums

Vn(λ, ε|y) :=
n∑

k=0

(−1)k

(
n

k

)(
λ − y

k + ε

)(
ε − 1 − y

ε + n − k

)
(3)

which enables us consequently to deduce further eleven closed formulae including
Dixon’s well–known one for the alternating cubic binomial sum. Finally in the fifth
section, the paper will end with a discussion on the connection between the classical
hypergeometric series and the cubic binomial sums treated in the present paper.

2. Alternating Binomial Sums: n = 2m

This section will present two closed formulae for the binomial sum displayed in (2)
with ε − λ = 0, 2 and three exceptional identities without λ-parameter. Because
it suffices to carry out the proving procedure described in the introduction, we are
limited to sketch only the key steps.

Theorem 2 (m ∈ N0 and λ ∈ Z).

U2m(λ, λ|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ

)(
k − y + λ

2m + λ

)

=

(
2m
m

)
(
2m+λ

m

)
(

y − 1
m + λ

)(
λ − y − 1

m + λ

)
.

Sketch of proof. When λ ≤ 0, this theorem can be shown by defining

A(y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ

)(
k − y + λ

2m + λ

)

and then verifying the following statements:
• A(y) is a polynomial of degree 2m + 2λ.
• All the zeros of A(y) are {i, λ − i : 1 ≤ i ≤ m + λ}.
• The constant factor can be determined at y = 0.

Alternatively for λ > 0, Theorem 2 can be confirmed by defining the polynomial
A(y) = A(y)

(y−1
λ−1)(λ−y−1

λ−1 ) and then proving the following three statements:

• A(y) is a polynomial of degree 2m + 2.
• All the zeros of A(y) are {i, λ− i : λ ≤ i ≤ m + λ}.
• The constant factor can be determined at the same point y = 0.
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Theorem 3 (m ∈ N0 and λ ∈ Z).

U2m(λ, λ + 2|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ + 2

)(
k − y + λ

2m + λ + 2

)

=

(
2m
m

)
(
2+2m+λ

m

)
(

y

m + λ + 2

)(
λ − y

m + λ + 2

)
.

Sketch of proof. When λ < 0, this theorem can be shown by defining

B(y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + λ + 2

)(
k − y + λ

2m + λ + 2

)

and then verifying the following statements:
• B(y) is a polynomial of degree 2m + 2λ + 4.
• All the zeros of B(y) are {i, λ − i : 0 ≤ i ≤ 1 + m + λ}.
• The constant factor can be determined at y = 2 + m + λ.

Alternatively for λ ≥ 0, Theorem 3 can be confirmed by defining the polynomial
B(y) = B(y)

( y
λ+2)(λ−y

λ+2)
and then proving the following three statements:

• B(y) is a polynomial of degree 2m.
• All the zeros of B(y) are {i, λ − i : 2 + λ ≤ i ≤ 1 + m + λ}.
• The constant factor can be determined at the same point y = 2 + m + λ.

In addition, we have three exceptional formulae without the integer parameter λ.

Theorem 4 (m ∈ N0).

U2m(3, 1|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + 1

)(
k − y + 3
2m + 1

)

=
(2m + y)(3 + 2m − y)

(m + 1)(2m + 1)

(
y − 3

m

)(
−y

m

)
.

Sketch of proof. This theorem can be shown by defining

C(y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + 1

)(
k − y + 3
2m + 1

)

and then verifying the following statements:
• C(y) is a polynomial of degree 2m + 2.
• All the zeros of C(y) are {i, 3 − i : 3 ≤ i ≤ 2 + m} plus {3 + 2m,−2m}.
• The constant factor can be determined at y = 2.

Theorem 5 (m ∈ N0).

U2m(−3, 1|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + 1

)(
k − y − 3
2m + 1

)

=
(2m − y)(3 + 2m + y)

(m + 1)(2m + 1)

(
y

m

)(
−y − 3

m

)
.

Sketch of proof. This theorem can be shown by defining

D(y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m + 1

)(
k − y − 3
2m + 1

)
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and then verifying the following statements:
• D(y) is a polynomial of degree 2m + 2.
• All the zeros of D(y) are {i, 3 − i : 0 ≤ i ≤ m − 1} plus {2m,−3 − 2m}.
• The constant factor can be determined at y = −1.

Theorem 6 (m ∈ N0).

U2m(1,−1|y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m − 1

)(
k − y + 1
2m − 1

)

=
m2(2m − y)(2m − 1 + y)

(
y−1
m

)(−y
m

)

12
(
y+1
4

) .

Sketch of proof. This theorem can be shown by defining

E(y) =
2m∑

k=0

(−1)k

(
2m

k

)(
k + y

2m − 1

)(
k − y + 1
2m − 1

)

and then verifying the following statements:
• E(y) is a polynomial of degree 2m − 2.
• All the zeros of E(y) are {i, 3− i : 3 ≤ i ≤ m} plus {2m, 1 − 2m}.
• The constant factor can be determined at y = 2.

3. Alternating Binomial Sums: n = 2m + 1

When n is odd, we shall evaluate, in this section, five binomial sums defined in (2)
for the integers λ and ε with ε−λ = 0,±1, 2, 3. Now that the proving procedure is
entirely the same as that for Theorem 1, we shall confine ourselves to sketch briefly
the crucial steps, instead of producing details.

Theorem 7 (m ∈ N0 and λ ∈ Z).

U2m+1(λ, λ − 1|y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ

)(
k − y + λ

2m + λ

)

= −
(
2m+2
m+1

)
(
2m+λ
m+1

)
(

y − 2
m + λ − 1

)(
λ − y − 2
m + λ − 1

)
.

Sketch of proof. When λ ≤ 0, this theorem can be shown by defining

P (y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ

)(
k − y + λ

2m + λ

)

and then verifying the following statements:
• P (y) is a polynomial of degree 2m + 2λ − 2.
• All the zeros of P (y) are {i, λ − i : 2 ≤ i ≤ m + λ}.
• The constant factor can be determined at y = 1.

Alternatively for λ > 0, Theorem 7 can be confirmed by defining the polynomial
P(y) = P (y)

(y−2
λ−1)(λ−y−2

λ−1 ) and then proving the following three statements:

• P(y) is a polynomial of degree 2m.
• All the zeros of P(y) are {i, λ − i : 1 + λ ≤ i ≤ m + λ}.
• The constant factor can be determined at the same point y = 1.
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Theorem 8 (m ∈ N0 and λ ∈ Z).

U2m+1(λ, λ|y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 1

)(
k − y + λ

2m + λ + 1

)

= −
(
2m+1
m+1

)
(
1+2m+λ

m+1

)
(

y − 1
m + λ

)(
λ − y − 1

m + λ

)
.

Sketch of proof. When λ ≤ 0, this theorem can be shown by defining

Q(y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 1

)(
k − y + λ

2m + λ + 1

)

and then verifying the following statements:

• Q(y) is a polynomial of degree 2m + 2λ.
• All the zeros of Q(y) are {i, λ − i : 1 ≤ i ≤ m + λ}.
• The constant factor can be determined at y = 0.

Alternatively for λ > 0, Theorem 8 can be confirmed by defining the polynomial
Q(y) = Q(y)

(y−1
λ )(λ−y−1

λ ) and then proving the following three statements:

• Q(y) is a polynomial of degree 2m.
• All the zeros of Q(y) are {i, λ − i : 1 + λ ≤ i ≤ m + λ}.
• The constant factor can be determined at the same point y = 0.

Theorem 9 (m ∈ N0 and λ ∈ Z).

U2m+1(λ, λ + 1|y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 2

)(
k − y + λ

2m + λ + 2

)
= 0.

Sketch of proof. When λ < 0, this theorem can be shown by defining

R(y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 2

)(
k − y + λ

2m + λ + 2

)

and then verifying the following statements:

• R(y) is a polynomial of degree 2m + 2λ + 2.
• R(y) has zeros {i, λ − i : 0 ≤ i ≤ m + λ + 1} whose cardinality is equal to

2m + 2λ + 4, greater than the degree of R(y); which forces R(y) ≡ 0.

Alternatively for λ ≥ 0, Theorem 9 can be confirmed by defining the polynomial
R(y) = R(y)

( y
λ+1)(λ−y

λ+1)
and then proving the following three statements:

• R(y) is a polynomial of degree 2m.
• R(y) has zeros {i, λ− i : 1 + λ ≤ i ≤ m + λ + 1} whose cardinality is equal to

2m + 2, greater than the degree of R(y); which leads to R(y) ≡ 0.

Theorem 10 (m ∈ N0 and λ ∈ Z).

U2m+1(λ, λ + 2|y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 3

)(
k − y + λ

2m + λ + 3

)

=

(
2m+1
m+1

)
(
3+2m+λ

m+1

)
(

y

2 + m + λ

)(
λ − y

2 + m + λ

)
.
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Sketch of proof. When λ < 0, this theorem can be shown by defining

S(y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 3

)(
k − y + λ

2m + λ + 3

)

and then verifying the following statements:
• S(y) is a polynomial of degree 2m + 2λ + 4.
• All the zeros of S(y) are {i, λ − i : 0 ≤ i ≤ m + λ + 1}.
• The constant factor can be determined at y = m + λ + 2.

Alternatively for λ ≥ 0, Theorem 10 can be confirmed by defining the polynomial
S(y) = S(y)

( y
λ+2)(λ−y

λ+2)
and then proving the following three statements:

• S(y) is a polynomial of degree 2m.
• All the zeros of S(y) are {i, λ − i : 2 + λ ≤ i ≤ m + λ + 1}.
• The constant factor can be determined at the same point y = m + λ + 2.

Theorem 11 (m ∈ N0 and λ ∈ Z).

U2m+1(λ, λ + 3|y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 4

)(
k − y + λ

2m + λ + 4

)

=

(
2m+2
m+1

)
(
4+2m+λ

m+1

)
(

y

3 + m + λ

)(
λ − y

3 + m + λ

)
.

Sketch of proof. When λ < 0, this theorem can be shown by defining

T (y) =
2m+1∑

k=0

(−1)k

(
2m + 1

k

)(
k + y

2m + λ + 4

)(
k − y + λ

2m + λ + 4

)

and then verifying the following statements:
• T (y) is a polynomial of degree 2m + 2λ + 6.
• All the zeros of T (y) are {i, λ − i : 0 ≤ i ≤ m + λ + 2}.
• The constant factor can be determined at y = m + λ + 3.

Alternatively for λ ≥ 0, Theorem 11 can be confirmed by defining the polynomial
T(y) = T (y)

( y
λ+3)(λ−y

λ+3)
and then proving the following three statements:

• T(y) is a polynomial of degree 2m.
• All the zeros of T(y) are {i, λ − i : 3 + λ ≤ i ≤ m + λ + 2}.
• The constant factor can be determined at the same point y = m + λ + 3.

4. Leibniz Rule and Dixon–Like Formulae

Recall the Leibniz rule for the product of two functions

∆n
{
f(τ )g(τ )

}
=

n∑

k=0

(
n

k

)
∆kf(τ )∆n−kg(τ + k).

Combining the binomial relation

∆k

(
x + τ

m

)
=

(
x + τ

m − k

)

with the difference expression
n∑

k=0

(−1)k

(
n

k

)(
k + x

p

)(
k + y

q

)
= (−1)n∆n

{(
x + τ

p

)(
y + τ

q

)}

τ=0
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we derive the following binomial transformation theorem.

Proposition 12 (Transformation on alternating binomial sums).

n∑

k=0

(−1)k

(
n

k

)(
k + x

p

)(
k + y

q

)
=

n∑

k=0

(−1)n

(
n

k

)(
x

p − k

)(
y + k

q + k − n

)
.

This generalizes slightly the transformation formula due to Gould and Quain-
tance [6, Theorem 3.1] from four to five free parameters. In particular, for the
cubic sum displayed in (2), the corresponding transformation reads as

n∑

k=0

(−1)k

(
n

k

)(
k + y

n + ε

)(
k − y + λ

n + ε

)
=

n∑

k=0

(−1)n

(
n

k

)(
k + y

k + ε

)(
λ − y

n − k + ε

)

=
n∑

k=0

(−1)n

(
n

k

)(
λ − y

k + ε

)(
n − k + y

n − k + ε

)

=
n∑

k=0

(−1)k+ε

(
n

k

)(
λ − y

k + ε

)(
ε − 1 − y

n − k + ε

)

where the sum in the middle is justified by the replacement k → n−k and that one
in the ultimate line by inverting the rightmost binomial coefficient. Connecting the
first and the last sums, we can further reformulate the resulting equality as

Un(λ, ε|y) = (−1)εVn(λ, ε|y)

which can explicitly be stated as the following relation.

Corollary 13 (Transformation on alternating binomial sums).

n∑

k=0

(−1)k

(
n

k

)(
k + y

n + ε

)(
k − y + λ

n + ε

)
=

n∑

k=0

(−1)k+ε

(
n

k

)(
λ − y

k + ε

)(
ε − 1 − y

ε + n − k

)
.

For the cubic binomial sum, Dixon’s identity (cf. Comtet [5, P174] and Graham et
al [7, §5.5]) is well–known

n∑

k=0

(−1)k

(
n

k

)3

=

{
0, n − odd;
(−1)m (3m)!

(m!)3
, n = 2m.

When 1 + λ = ε = 0 and y = −1 − n, the binomial sum on the right hand side
displayed in the equation of Corollary 13 becomes the last cubic binomial sum.
This encourages us to transform all the summation formulae exhibited in the last
two sections into Dixon–like identities. In order for the readers to have an easy
access, they are collected in the following table, where the “Note” for each formula
indicates the theorem based on which the formula has been derived.
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n λ ε Closed Expression for Vn(λ, ε|y) Note

2m λ 1 + λ
(−1)1+λ

(
2m
m

)
(
1+2m+λ

m

)
(

y

m + λ + 1

)(
λ − y

m + λ + 1

)
Theorem 1

2m λ λ
(−1)λ

(
2m
m

)
(
2m+λ

m

)
(

y − 1
m + λ

)(
λ − y − 1

m + λ

)
Theorem 2

2m λ 2 + λ
(−1)λ

(
2m
m

)
(
2+2m+λ

m

)
(

y

m + λ + 2

)(
λ − y

m + λ + 2

)
Theorem 3

2m 3 1
(y + 2m)(y − 2m − 3)

(m + 1)(2m + 1)

(
y − 3

m

)(
−y

m

)
Theorem 4

2m −3 1
(y − 2m)(y + 2m + 3)

(m + 1)(2m + 1)

(
y

m

)(
−y − 3

m

)
Theorem 5

2m 1 −1
m2(y − 2m)(y + 2m − 1)

(
y−1
m

)(−y
m

)

12
(
y+1
4

) Theorem 6

2m + 1 λ λ − 1
(−1)λ

(
2m+2
m+1

)
(
2m+λ
m+1

)
(

y − 2
m + λ − 1

)(
λ − y − 2
m + λ − 1

)
Theorem 7

2m + 1 λ λ
(−1)1+λ

(
2m+1
m+1

)
(
1+2m+λ

m+1

)
(

y − 1
m + λ

)(
λ − y − 1

m + λ

)
Theorem 8

2m + 1 λ 1 + λ 0 Theorem 9

2m + 1 λ 2 + λ
(−1)λ

(
2m+1
m+1

)
(
3+2m+λ

m+1

)
(

y

2 + m + λ

)(
λ − y

2 + m + λ

)
Theorem 10

2m + 1 λ 3 + λ
(−1)1+λ

(
2m+2
m+1

)
(
4+2m+λ

m+1

)
(

y

3 + m + λ

)(
λ − y

3 + m + λ

)
Theorem 11

5. Terminating Almost–Poised 3F2-Series

For an indeterminate x and a natural number n, denote the shifted–factorial by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) where n ∈ N.

Following Bailey [1], the generalized hypergeometric series 1+rFr, for an indetermi-
nate z and a nonnegative integer r, is defined by

1+rFr

[
a0, a1, · · · , ar

b1, · · · , br

∣∣∣ z

]
=

∞∑

k=0

(a0)k(a1)k · · · (ar)k

k!(b1)k · · · (br)k
zk.

When one of numerator parameters {ak} is a negative integer, then the series
becomes terminating, which reduces to a polynomial in z. In particular if the
parameters satisfy the condition 1 + a0 = a1 + b1 = · · · = ar + br, then the series
is said to be well–poised, which has been well–studied in the classical theory of
hypergeometric series.
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In terms of hypergeometric series, both binomial sums Un(λ, ε|y) and Vn(λ, ε|y)
displayed respectively in (2) and (3) can be expressed as

n∑

k=0

(−1)k

(
n

k

)(
k + y

n + ε

)(
k − y + λ

n + ε

)
=

(
y

n + ε

)(
λ − y

n + ε

)

× 3F2

[
−n, 1 + y, 1 + λ − y

1+λ−y−n−ε, 1+y−n−ε

∣∣∣ 1
]

,

n∑

k=0

(−1)k

(
n

k

)(
λ − y

k + ε

)(
ε − 1 − y

ε + n − k

)
=

(
λ − y

ε

)(
ε − 1 − y

n + ε

)
(−1)ε

× 3F2

[
−n, ε − λ + y, −n − ε

−y − n, 1 + ε

∣∣∣ 1
]

.

When ε = 1 + λ, both 3F2-series are well–poised, which fall into the classical
hierarchy of terminating well–poised 3F2-series. When ε 6= 1 + λ, they are called
“almost–poised” series that do not have, in general, closed forms. Therefore from
this point of view, the formulae presented in this paper are particularly remarkable.

Before concluding the paper, we remark that it is generally not an easy task to
figure out all the zeros for the polynomial Un(λ, ε, |y), which need good fortune
and coincidence. For example, the additional polynomial zeros in the proofs of
Theorems 4, 5 and 6 have been justified by the formulae of Watson and Whipple
for 3F2-series (cf. Bailey [1, §3.3 and §3.4]).

References

[1] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge,

1935.
[2] L. Carlitz – J. Kaucky – J. Vosmansky, On two combinatorial identities, Moth. Slovaca 32

(1982), 297–300.
[3] W. Chu, Finite differences and determinant identities, Linear Algebra and its Applications

430:1 (2009), 215–228.

[4] W. Chu, Elementary proofs for convolution identities of Abel and Hagen–Rothe, Electronic
Journal of Combinatorics 17 (2010), #N24.

[5] L. Comtet, Advanced Combinatorics, Dordrecht–Holland, The Netherlands, 1974 (Chap. III).
[6] H. W. Gould – J. Quaintance, Generalizations of Vosmansky’s identity, Fibonacci Quarterly

48:1 (2010), 56–61.
[7] R. L. Graham – D. E. Knuth – O. Patashnik, Concrete Mathematics, Addison-Wesley Publ.

Company, Reading, Massachusetts, 1989.
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