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Summary By combining the linearization method with Dougall’s sum for well—
poised 5 Fy-series, we investigate the generalized Watson series with two extra in-
teger parameters. Four analytical formulae are established, which can be used to
evaluate also the extended Whipple and Dixon series via the Thomae transforma-
tion. Twelve concrete formulae are presented as exemplification.

1. INTRODUCTION AND MOTIVATION

For an indeterminate x and a natural number n, denote the shifted—factorials by
()o=1 and ()p=z(z+1)---(x+n—-1) for neN;
(x)o=1 and (z)p,=z(z—1)---(r—n+1) for neN.

Following Bailey [1], the hypergeometric series, for an indeterminate z and two
nonnegative integers p and ¢, is defined by

ag, a a o~ (a0)k(an) - (ap)w
. 0, a1, pz]z 0 k- (ap Zk
14+pl'q [ bi, -, by kgo Kby - - - (by)k

where {a;} and {b;} are complex parameters such that no zero factors appear in
the denominators of the summands on the right hand side. For the sake of brevity,
the product and fraction of shifted factorials will be abbreviated respectively as

[Aa B, -, C]n = (A)n(B)n(C)n;
|:Oé, ﬁa Ty ,Y:| _ (O‘)n(ﬁ)n (fy)n
A’B""’Cn (A)n(B)n"'(C)n.

The I'-function quotient will analogously be shortened as

s8] - Nar@-r
A, B,---,C|] T T(AL(B)---L(C)

There are many hypergeometric series formulae in the literature of mathematics
and physics. Among them, the following three formulae for nonterminating series
have been fundamental in the theory of classical hypergeoemtric series (cf. Bailey [1,
Chapter IIT] and Chu [5]).

e Dixon [6]: R#(1+§—-b—c) >0

a, b, c l+a-bl+a—cl+§,1+5-b—c
! 1| =T )
l+a—b14a—c 1+5-b,14+5—c,1+a,1+a—-b-c

e Watson [19]: (1 —a—b+2¢) >0

1 1
a, b, c B 5, 5 5
3y |:1+a+b 20‘1] =T |:1+a 150 124
2 )

3lh [

(2)
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e Whipple [20]: R(c) >0

3)

e
P a,l—a,c‘ —-r| 2 7 2
e, 142c—e eta 1+g—a, ¢+ 1—e+a, c+ 2—;—(1

As shown by Bailey [1, Chapter IIT], these three 3 F5(1)-series are connected by the
following useful transformation due to Kummer—-Thomae—Whipple, which can be
reproduced as
a,c, e _ b, d, A b—a,d—a, A

3F2[ b,dl] _F[a, c—i—)\,e—i—)\] 3F2[ c+ e+ A\ ‘1] (4)
where A = b+ d — a — ¢ — e. This transformation has further been employed by
Milgram [14], where a systematic examination has been carried out for numerous
3F5(1)-series identities.

Wimp [21] has shown that Watson’s formula cannot be generalized into the series
3Fy [‘;gﬂl] with four free parameters {a,b, c,d} (see Zeilberger [22] for a shorter
proof). Since then, attention has been turned to extending the series displayed in

(1-3) by adjusting the parameters with specific integers m and n:

a, b, c ‘1 2 a, b, c ‘1 2 a,l—a—i—m,b‘l
l4a—b+m,14+a—c+nl |32 Iratbim 9c4+n B3R e 142b—c4n ||

When m = n = 0, they reduce to the original Dixon, Watson and Whipple se-
ries. By utilizing contiguous relations for the 3Fb-series (cf. Rainville [15, §48]),
Lavoie et al [10-12] made an extensive investigation to these three series when m
and n are small integers. Their experimental computation leads to collections of
25 formulae for generalized Watson series (the second one just displayed) in [10]
and 38 formulae for generalized Dixon series (the first one just displayed) in [11],
where the latter ones are further translated, via the Thomae transformation, into
38 formulae for generalized Whipple series (the third one just displayed) in [12].
For limiting relations, different proofs and other related works, the reader can find
in the following papers [2-4,9,16-18].

3y

Lewanowicz [13] made the first attempt to find analytical formula for the last three
series with m and n being general integer parameters, who derived general expres-
sions in terms of three known formulae (1-3). However for most of his formulae,
the connection coefficients have to be determined implicitly by recurrence relations
involving two variables, which are not convenient to practical evaluation.

The present paper aims at establishing analytical formulae explicitly for the gen-
eralized Watson—Whipple-Dixon series with two integer parameters m and n. In
the next section, we shall prove four crucial preliminary lemmas that transform the
generalized Watson series into Watson’s original one (2). This will be accomplished
by combining the linearization method with the following summation theorem for
terminating well-poised 5 Fy-series due to Dougall [7] (cf. Bailey [1, §4.3]):
l1+a,l14+a—b d] _.F )

a, 1+ 3, b, d, -m
l+a-bl+a—d| ‘

1
$51+a—-b1l+a—d,1+a+m

According to the signs of m and n, four analytical formulae for the generalized
Watson series with two extra integer parameters will be derived in Section 3. By
means of the Thomae transformation (4), the generalized Whipple and Dixon series
with two integer parameters m and n are converted to those for generalized Watson
series in the last two sections 4 and 5.
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Based on our analytical formulae, the corresponding commands in Mathematica
are written to evaluate the series of three classes (Watson, Whipple and Dixon) for
any specific integers m and n. We are limited to present twelve examples with four
representatives for each class, even though it would be routine to produce longer
list such as those given by Lavoie et al [10-12].

2. FOUR TRANSFORMATION LEMMAS

Define the two nonterminating 3 Fp-series with four free parameters {a,b, ¢, d} by

a, b, ¢
Um(aa b, ¢, d) = 3F2 |:1+a+b+m d 1:| ) (6)
2 )
) b)
Vn(a)bacad) = 3F2 |:ad 2Cin‘1:| . (7)

Then Watson’s series displayed in (2) results in the particular cases
Uo(a, b, c,2¢) = Vy(a,b,c, 1%"”’)

By means of the linearization method, we shall show four transformations for the
series U,, and V,, with respect to the signs of m and n. They will be utilized, in
the next section, to derive explicit formulae for the generalized Watson series with
two integer parameter m and n.

§2.1. Transformation for U,,. Observe that any m+ 1 polynomials of degree m
in k are linearly dependent. There exist m + 1 constants { X! } such that

m
1= X} (a+k)i(b+ k)i (8)
i=0
Equating the coefficients of k7 with 0 < j < m, we get from (8) a system of equations

in {X?,}, which can be resolved by the following Mathematica commands for any
(not too large) specific natural number m:

pplx_, n_] := Pochhammer[x, n]

uulk_, m_] := Sum[xx[i, m]*ppla+k, il*pp[b + k, m - i], {i, 0, m}]
ee[m_] :=Table[Coefficient [uulk,m] ,k,i] == If[i==0,1,0], {i, O, m}]
wwlm_] :=Flatten[MapAll[Factor, Solve[ee[m], Table[xx[i,m], {i,0,m}1]1]]

The first few outputs for “ww[m]” with 1 < m < 5 have nice pattern and suggest
the following solution

x;, = -1

This is equivalent to the following equality

_ — 9
m>b CXm =2 =01, m. (9)

) (b —a— i)m+1

(10)

(b—a)m la—b—m,l—i—“_b;m,a—i—kz,—m‘ 1]

>z Um R
b+k)m P eEm i —k—m1+a—b

which can be justified by the limiting case of Dougall’s theorem for 5Fj—series
displayed in (5), specified by a - a —b—m, b — a+ k and d — 0.
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Now considering the composite series and then interchanging the summation order,
we have the double series expression

a, b, c L
Un, (aa b7 c, d) = Z |:1 1+a+b+m d:| Z X;n (a + k)'t(b + k)m—i
k>0 L7’ 2 7k =0

m
; a, b, c
= > Xy [1 Ltatb+m d] (@+E)i(b+ k)m—i
2 ? k

i=0 k>0t
m
. a+i,b+m—1i,c
= Z X7 (a)i(0)m—i Z [ 1, Ltatbtm g ]
._ ) 2 ) k
i=0 k>0
which gives rise to the following equation
m
Un(a,b,c,d) = Z X! (a)i(0)m—iUo(a+i,b+m —i,c,d). (11)
i=0

Substituting the explicit expression of X! into the last equation and then simpli-
fying the result, we get the first transformation formula.

Lemma 1 (m € Np).

b m
Um(a,b,c,d):(b(_%zz(T)Ug(a—i—i,b—l—m—i,c,d)
™ =0
Xa—b—m+2i[ a,a—b—m

a—b—m 1+a—b,1—b—mi'

The special case d = 2c¢ of this lemma has been discovered by Lewanowicz [13,
Equation 2.2]. To our knowledge, this is the only case that the explicit coefficients
are previously determined for expressing the generalized Watson series with two
integer parameters m and n in terms of Watson’s original one (2).

§2.2. Transformation for U_,,. In this case, there exist m + 1 constants {X¢ }
independent of k such that

(Liﬁ%ﬁ:ﬁ1+kln:Z;x;m+kpw+knhp (12)

Analogously with the help of the Mathematica commands below

uulk_,m_] :=pp [k+(1+a+b-m)/2,m]-Sum [xx [i,m] *pp [a+k,i] *pp [b+k,m-i],{i,0,m}]
ee[m_] := Table[Coefficient[uulk, m], k, il == 0, {i, 0, m}]
ww[m_] := Flatten[MapAll[Factor, Solve[ee[m], Table[xx[i, m], {i,0,m}]1]11]

the coefficients X are detected (but to be verified) as follows:
- 1- b— b— —2i
i, = (Lmetbomy (myboamo2 g )
2 m\ i) (b—a—1)m
This is equivalent to the following equality

[b —a, 1+a—gb—m +k

] F a_b_mal‘f‘a_bT_m,a—i-kj,—m
1-a+b— = 4r3
b+ k,L=atb=m |

azbom ) —bp—k—m,1+a—b

h] (14)

which turns to be a special case of Dougall’s formula (5) under the parameter
specifications a = a—b—m,b—a+kandd— (1+a—b—m)/2.
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Then we can manipulate the following composite series

a, b, c (a+k)i(b+ k)
U_m(a,b,e,d) = Z [1 1+a+b m d] sz 1+a+b m _i_]:)1 1

k>0 k=0
m
i b, c (a‘f‘k’)i(b-i‘k?)m_z
- Sy [ mhs ] G
; mlgo 1, a2 m,d X (1+a—5 m+k)m

m
o (a)i(D)m—i a+i,b+m—i,c
L L [ v

i=0 ( 2 )meO ’ 2 ’ k

which results in the following equation

m
; (a)i(b)m—i . .
U_m(a,b,c,d)zZX%@%#UO(a—i—z,b—l—m—z,c,d). (15)
i=0 ( 2 )m
Substituting the explicit expression of X into the last equation and then simpli-
fying the result, we find the second transformation formula.

Lemma 2 (m € Ny).

bl a+bm m (m ' '
1+a+b m Z(—l)’ ; Up(a+i,b+m —i,c,d)
m =0
a—b—m+2i a,a—b—m
x 1+a—b1l-b—m|,

U—m(aa ba ¢, d) = |:b —a,

a—b—m

§2.3. Transformation for V,,. Now that any n+ 1 polynomials of degree n in k
are linearly dependent, there exist n + 1 constants {Y;?} such that

n
1= Y(k);j2c+n+k— 1), (16)
Equating the coefficients of k* with 0 < i < n, the Mathematica commands below

qqlx_, n_] := (-1) n*Pochhammer[-x, n]

vvlk_, n_] := Sumlyy[j, nl*qqlk, jl*pp[2c + k¥ + j, n - jl, {j, 0, n}]
ee[n_] :=Table[Coefficient[vv[k, nl, k, jl == If[j == 0,1,0], {j, 0, n}]
ww[n_] :=Flatten[MapAll[Factor, Solvel[ee[n], Tablel[yy[j, nl, {j,0,n}]111]

reveal the following experimental solution

, , 2j —1+2
vi= (1 (1) e for =01, an
J) (G —14+20)n41

This is equivalent to the following equality

Q0 _ |2 et g o -1 (18)
(20+kz)n_4 ’ c—32,2c+k2c+n

which can be justified again by the limiting case of Dougall’s sum (5), corresponding
to the parameter settings a — 2¢— 1, b — —k and d — oo.
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Now considering the composite series and then interchanging the summation order,
we have the double series expression

n

2[1 d26+n] > Yik)(2c+n+k—1),_

k>0 k j=0

Va(a,b,c,d)

y a, b c
& O[1d2c+n

|

] (k);j(2c+n+k—1),_;

J

|
NE

 (a);(0);(c) a+j,b+j, ctj
yi \WiWil%; » b+, |
"(d)g(2c+n)gj_nz L, d+j, 2c+2j|,

<.
I
o

k>0

which results in the following equation

Vi(a,b,c,d) = ;Yg%%(aﬁi,bﬁi,ﬁj,wﬂ)- (19)

Substituting the explicit expression of ¥,/ into the last equation and then simplifying
the result, we have the third transformation formula.

Lemma 3 (n € Npy).

w(a,be,d) =

n
Jj=

(2¢—1
( >67)|: abc :| %(a+])b+]ac+]ad+])

0 (2¢—1) d,2c+

§2.4. Transformation for V_,,. Analogously there exist n + 1 constants {Y7}
independent of k such that

n
(c—n+k)n Zy )i2c—n+k—1),_ (20)
7=0
By utilizing the Mathematica commands below

vvlk_, n_] := pplc-n+k,n]-Sum[yy[j,nl*qqlk,jl*pp[2c-2n+k+j,n-j1, {j,0,n}]
ee[n_] := Table[Coefficient[vv[k, nl, k, jl == 0, {j, 0, n}]
ww[n_] := Flatten[MapAll[Factor, Solve[ee[n], Tablel[yy[j, nl, {j,0,n}111]

we can similarly figure out the coefficients Y7 as follows:

i_ (" 2c+25 —2n—1 (1—c)p ‘ o .
o (.7 2ce+j—-n—-1 2+n—j—2¢), or j 1, M. (21)

This is equivalent to the following equality

c—n+k,2c—2n|
c—n,2c—2n+k n_4 3

2c—2n—1,c—n+%,—kz,—n
) 1 (22)
c—n-—s5,2c—2n+k,2c—n

which is, in fact, a particular case of Dougall’s theorem (5) with the parameters
being specified by a — 2c—2n—1,b — —k and d — ¢ —n.
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For the following composite series, it can be reformulated as

—n+k—1),_
Von(a,b,c,d) = kz[l d, 2c— ] ZW c—n—i—k:)n
>
_ j C (k:)j(2c—n+k:—1)n_J
_]Zoy kgo[l d, 2c — L (c—=n+k)n

|

yi (a);(b);(c)j—n 3 atj,b+j c+j—n
"(d)j(QC—n)Qj—nk 1, d—i—], 2¢+ 25 —2n &

which leads to the following equation

§=0 >0

Von(a,b,c.d) = szc—))_"‘/o(aJrj,bJrj,chj—n,d+.7')- (23)
s

Substituting the explicit expression of Y7 into the last equation and then simplifying
the result, we obtain the fourth transformation formula.

Lemma 4 (n € Np).

v b d) — " /n (2¢—2n-1); [a,b,c—n Volatj, b+, c+j—n, d+j)
—n(aa , Cy )_ ] (26—27@—1)21‘ d,2C—7’L ; 0(a 7 J,cT]—n, J)-

j=0
3. EXTENSION OF WATSON’S 3F5—SERIES

For the two integer parameters m and n, the extended Watson series is defined by

a, b c
W = [ ) ‘1 24
m,n (aa b7 C) 342 1+a—5b+m, 2c+n :| ( )

which reduces to Watson’s original one displayed in (2) when m = n = 0. According
to Lemmas 1 and 2, this series

Winn(a, b, ¢) = Un(a, b, c,2c+n) (25)
can be written as linear sum of
Uo(a',b',c',2c'+n):Vn(a',b',c',H“T'"’b') (26)

which can further be expressed, in view of Lemmas 3 and 4, in terms of Watson’s
original series

WO,O(a”a b”a C”) = ‘/O(a”a b”a C”, 1+a’2'+b” ) (27)
This leads to the double sum expression of Wi, ,,(a, b, ¢) in (|m|+1)(Jn|+1) terms of
Woo(a”,b"”, "), which permits us to evaluate Wy, (a, b, ¢) for any specific integers
m and n. The results are displayed in the following four theorems with respect to
the signs of m and n.

For m > 0 and n > 0, combining Lemma 1 with Lemma 3 yields the first summation
theorem, which expresses Wi, ,, explicitly in terms of Wy .
Theorem 5 (m, n € Np).

)it n\a—b—m+2i (@)isj (D)m—it;
Wmnabc Z ( ><j>a—b—m+i (b—a—i)m(2c—1)2j

1=0 j=0

c, 2c—1 . S ;
X[1+aJ5b+m 2c+n] Woola+i+37,b+m—i+j,c+j).
’ J
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For m > 0 and n < 0, combining Lemma 1 with Lemma 4 gives the second sum-
mation theorem, which expresses W, ,, explicitly in terms of Wy q.

Theorem 6 (m, n € Np).

m n .
(m\ (n\a—b—m+2i (@)itj(O)m—itj
Wi - _1)
m,—n (0, b, ) 0( )<i><j>a—b—m+i (b—a—19)m(2c—2n — 1),

i=0 j=

c—n,2c—2n—1 L L .
><[1_MJ5;,er 2c—n] Woola+i+7,b+m—i+jc+j—n).
’ J

For m < 0 and n > 0, combining Lemma 2 with Lemma 3 results in the third
summation theorem, which expresses W, ,, explicitly in terms of Wy g.

Theorem 7 (m, n € Np).
1— a+b m

oo RS () ()

a)itj c,2c—1 L o ;
ﬁ[lﬂgﬂm 2c+n] Woola+i+j,b+m—i+j,c+ 7).
J ’ j

For m < 0 and n < 0, combining Lemma 2 with Lemma 4 leads to the fourth
summation theorem, which expresses W, ,, explicitly in terms of Wy g.

Theorem 8 (m, n € Np).
(1—a+b—m

W bo) — ) e s (M (n\ @ —b—m+2i [¢—n,2c—2n—1
G ’C>—WZZ iJ\j) a—b—m+i | R 2 —n |

m =0 j=0

Woola+i+jbt+m—i+jctj—mn).

These four analytical formulae constitute a complete scheme to evaluate the gen-
eralized Watson series Wy, ,, for any two specific integers m and n. Four formulae
are presented here as exemplification.

Example 9.
2420 (1 4 ST (e + (e — 22)/(a — b)
Wia(a,b.c) = 7r3/2r(J)r T(B)L(1 +2¢ —a)D(1 + 2¢ — b)
< Jeemaror(SG)r()r(ze-gr(ire-3)
~@eta-nr(D)r(t ;by(1+c_gy(;+c_g)}
Example 10.
Wb = 2TE ZTe— 5= )/ —b)

w320 (a)T(D)['(2¢c —a — 1)T'(2c — b — 1)

: [(”“) (Br(-5r-3)
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Example 11.
2420 ()P (e + DD(1 + ¢ — 2Eb)
W_1,1(a,b,c) 73/2T (a)T'(b)T (1+20_a)1jr(1+20_b)
< (@I e $r(ee-3)
(g (5 (re (g ee-3))
Example 12.
W_1_1(a,b,c) 24c-Tp (atb o\ (c—3)r (C_l_aT-‘rb)

m3/20 (a)T(b)T'(2¢ — a — 1)T'(2c — b — 1)

X [(2c—a+b— 2)r(1;“)r(g)r(c— 1—;_@)1’(0— g)

+@c+a_b_2n(gy(£gﬁy(c_gy(c_lgﬁﬂ.

4. EXTENSION OF WHIPPLE’S 3F5—SERIES

For the two integer parameters m and n, define the extended Whipple series by

a,l—a+m,b ‘ ]

Qumn(a,b,c) = 3F2 [c 1+2b—c+n

(28)
which reduces to Whipple’s original one displayed in (3) when m = n = 0. Applying
the Thomae transformation (4), we have

Q0 (abc)_F[c,b—m—i—n,l—i—%—c—i—n]
m,n s Y -

a,l—a+b+n,2b—m+n

(29)
o F, €T 142b—a—c+n, b—m+n ‘
352 l—a+b+n, 2b—m+nl |’
Identifying the last 3F»-series with Wy, ,,,—p,, we get the following relation:
c,b—m+n,14+2b—c+n
Qm’"(a’b’c)_F[a,l—a+b+n,2b—m+n] (30)

X Wy m-n(c—a,1+2b—a—c+n,b—m+n).

This transformation formula converts the generalized Whipple series into the gen-
eralized Watson series. Combining it with Theorems 5-8, we can evaluate the
generalized Whipple series Qy, »(a,b,¢) for any specific integers m and n. Four
examples are displayed below.

Example 13.

22630 (e)I(2b — ¢+ 2)/{(1 —a)(1 +b—c)}
mT(a+c—2)T(c—a)l(a+2b—c)T'(2+2b—a—c)

P (e )

() (e ) (o 5|

(2171(@, b, C) =
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Example 14.
Qi) =
< ) e 5
G
Example 15.

226=4r(e)L'(2b — ¢+ 2) /{(a—1)(a—2)(b—1)(b — c+ 1)}
mMa+c—3)(c—a)l(a+2b—c—1)I'(2b—a—c+2)

e () (o e (o 20

(2271(0/, b, C) =

2 2

e (TR (o S5 T

2 2 2
Example 16.
926=21 () (2D — ¢)
a4+ c+1)l(c—a)l'(a+2b—c+ 1)I'(2b—a—c¢)

Jeon (O (e (-5

Q—Q,—l(aa ba C) =

Fer (SR (S ) (o 5|

5. ALMOST—POISED 3F»—SERIES

For the two integer parameters m and n, define the almost—poised 3F5-series by
a, b, c
Dm,n(aabac)_?)FQ[ 1+a—b+m,1+a—c+n‘1] (31)

which reduces to Dixon’s original one displayed in (1) when m = n = 0. Applying
the Thomae transformation (4), we get
l1+a—b+m,14+a—c+n,24+a—-2b—2c+m-+n
Dmn(a,b,c)=T
’ b,24+a—2b—c+m+n,24+2a—2b—2c+m+n
1+a—26+m,2+a—26—20+m+n,1+a—b—c+n‘1
24+a—-2b—c+m+n,2+2a—2b—2c+m+n '

h [ (32)

Identifying the last 3F»-series with Wy, ,,,—p,, we obtain the following relation:
Dy m(a,b,c) = T l14a—-b+m,1+a—c+n,24+a—2b—2c+m+n
AT T b,24+a—-2b—c+m+n,2+2a—2b—2c+m-+n (33)
XWom-n(l+a—2b+m,24+a—-2b—2c+m+n,1+a—b—c+n).

This transformation formula converts the almost—poised 3F5-series into the gen-
eralized Watson series again. Combining it with Theorems 5-8, we can evaluate
the almost—poised 3Fy-series D,y ,,(a, b, ¢) for any specific integers m and n. Four
formulae are exhibited as examples.
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Example 17.
Dy o) 91+2a=2b=2cP (g — h + 2)[(a — ¢+ 2)/{(b — 1)(1 — ¢)}
LGB T )T (@ — 26+ 2)0(a — 2¢ + 2)T(a — b —c + 2)
1+a 24a 2+a S5ta
LG ONC IC PR S
3+a 3+a d+a
(et )
Example 18.
B 22a—2b—20—3r(a_b) (a—c)
D_l,—l(a,bac) - nF(a)F(a—Qb)F(a—QC) (a—b—c)
a 14+a 1+a a
[ ()
a+1 a a lta
GG (5 o)
Example 19.
B 4b+c—a—3ﬂ.r(a — b+ 3)1‘(@ —c+ 3)F(a —2b—2c+6)
Do o(a,b,c) = (b—1)(b—2)(c—2)(c— 1T (a—b—c+3)
y a? — 2ab — 2ac + 2bc + 5a — 2b — 2¢ + 2
T (5 - )T (5 - T (5 -9
B 4
F()T (35 =) T (35 )T (54 —b—c)
Example 20.
1+b+c—a _h_ e _ _ —
D_ o _s(a,bc) = 4 mla—b-1DI'(a—c—1)I'(a—2b—2c—2)

Pla—b—c—1)

a? — 2ab — 2ac + 2bc — 3a + 2b+ 2¢ + 2

CTEOTG OG- 9T o)

T (DT (9T (5259

Before concluding the paper, we would like to point out that there exists a common
generalization of bilateral series due to M. Jackson [8] for both Watson’s theorem
(2) and Whipple’s theorem (3). The interested reader is encouraged to pursue the
corresponding bilateral counterparts for the formulae displayed in this paper.
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