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Let Φ be a crystallographic reduced root system
in the euclidean space E with scalar product (·, ·).
Let R be the Z–span of Φ in E and define |γ|, the
length of γ, as the minimum r ≥ 0 such that there
exist r roots β1, β2, . . . , βr with γ = β1 +β2 + · · ·+
βr. So |γ| is the size of a minimal partition of γ in
roots.

Our aim is to describe the map R 3 γ 7−→ |γ| ∈
N. (It is called the word length with respect to Φ in
[1], see also [12], and [14]). As we show it is related
to the convex hull PΦ of Φ in E, called the root
polytope. Given an element λ ∈ E, let H(λ) be the
closed half–space of E defined by {u ∈ E | (λ, u) ≤
1}. If F is a facet of PΦ let λF ∈ E be such that
(λF , u) = 1 if u ∈ F and (λF , u) < 1 for u ∈ PΦ\F ;
then PΦ = ∩FH(λF ) is a half–space presentation
of PΦ. Moreover let V (F )

.
= F ∩ Φ be the set

of roots in F and C(V (F )) be the Q+–cone over
V (F ), i.e. the set of non–negative rational linear
combinations of elements of V (F ). Our main result
is the following formula.

Theorem A. For any γ ∈ R we have

|γ| = max
F
d(λF , γ)e.

So if γ ∈ C(V (F )) for some facet F then |γ| =
d(λF , γ)e.

Hence we see that the length map is quasi–linear,
i.e. linear up to taking the integral part, on the
cones over the facets of PΦ.

Our proof of this theorem is straigthforward but
has a unique interesting point; the map γ 7−→ |γ|
needs to be evaluated at the generators of the
monoid M(F )

.
= C(V (F )) ∩ R, with F a face of

PΦ. Let N(F ) be the N–span of V (F ) and Z(F )
be the Z–span of V (F ); N(F ) is a submonoid of
M(F ) and we say that the face F is normal if
C(V (F ))∩Z(F ) = N(F ). Notice, however, that it
is to be expected that M(F ) is larger than N(F )
since for some faces Z(F ) is a proper sublattice
of R. We call M(F ) the integral closure of N(F )

in R and we say that F is integrally closed in R
if M(F ) = N(F ). The relation of these monoids
to certain toric varieties gives reason to these def-
initions; in particular the normality of a face F
is equivalent to the normality of the toric variety
whose coordinate ring is C[tβ |β ∈ V (F )]. Simi-
lar varieties have been extensively studied over the
years; see for example [11], [7] and the other papers
cited there.

As stated above, we need to find the generators of
M(F ); this computation uses the uniform descrip-
tion of PΦ given by Cellini and Marietti in [4] (see
also Vinberg’s paper [13] and [6], [7] for a general-
ization). Assuming here that Φ is irreducible, the
faces of PΦ may be naturally defined in terms of the
affine root system associated to Φ. Let us say that
a simple root α is maximal if its complement in the
affine Dynkin diagram of Φ is connected. Let ω̌α be
the coweight dual to α and let θ be the highest root
of Φ; then the standard parabolic facet F (α), with
α a (simple) maximal root, is the set of elements
u ∈ E such that ω̌α(u) = ω̌α(θ). All facets of PΦ

are conjugate of the standard parabolic facets by
the Weyl group. Notice that this gives in partic-
ular an explicit half–space presentation of PΦ and
allows for an effective computation of the length as
in the above Theorem.

We are now ready to report our computation
about the generators of M(F ). We prove that
the intersection of M(F ) with a face of the cone
C(V (F )) is the monoid M(F ′) for some facet F ′

of a subsystem of Φ; hence we consider only the
proper generators of M(F ), i.e. those not in the
border of C(V (F )).

Theorem B. Let F be a facet of PΦ, then the
proper generators for the monoid M(F ) not in
V (F ) are as follows:

• 2ω3 for the facet F (α3) of type B3,

• 2ω2 for the facet F (α2) of type E7,

• ω2 and 2ω2 for the facet F (α2) of type E8 and
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• ω1 and 2ω1 for the facet F (α1) of type G2.

All other facets of any other type have no proper
generator.

We develop a general theory for proper gener-
ators to a certain extend; but the proof of the
above Theorem needs some simple computations
and checks that are carried out on a case–by–case
basis. As a consequence we have the following two
results.

Corollary C. Any face of the root polytope PΦ is
normal.

Corollary D. The facet F (α), α ∈ ∆ a maximal
root, is integrally closed in R if and only if ω̌α(θ) =
1.

These integral closure properties may also be
proved by finding a unimodular triangulation of
the facets of the root polytope; see for example
[1] where such a triangulation is given for type A,
C and D via explicit realizations of these root sys-
tems. Similar polytopes related to root systems
and their normality are studied via unimodular tri-
angulation in [3], [8] and [9] while in [10] a com-
binatorial characterization of diagonally split toric
varieties is used. Notice however, that, to our best
knowledge, it is not known whether all root poly-
topes admit an unimodular triangulation suitable
to prove the above corollaries, nor we know how
to costruct a triangulation in a uniform way with
respect to the root system type.

It is natural to consider also another type of
length map. Let R+ be the N–span of the posi-
tive roots and to an element γ of R+ let us asso-
ciate the minimum number |γ|+ of positive roots
needed to write γ as sum of positive roots. So |γ|+
is the size of a minimal partition of γ in positive
roots. We call |γ|+ the positive length of γ. It is
clear that |γ| ≤ |γ|+ but in general this inequality
is strict. Consider, for example, B3 and the root
β
.
= α1 +α2 + 2α3; we have γ

.
= β−α2 = α1 + 2α3

and this shows that |γ| = 2 while |γ|+ = 3 since
any root has connected support.

Corollary E. The positive length map coincides
with the length map only for the types A` and C`.

For type A` we prove this theorem by compar-
ing a direct formula for the positive lenght with
the formula in Theorem A. For C` we use a differ-
ent strategy exploiting a triangulation of the root
polytope described in [5].

The different behavior of types A` and C` with
respect to the length map is reflected in the fol-
lowing compatibility condition. Let us denote by
P+

Φ the convex hull of the set Φ+ ∪ {0}, called the
positive root polytope, and let also C(Φ+) be the
non–negative rational cone generated by the posi-
tive roots. We say that Φ+ is polyhedral if C(Φ+)
is a union of cones generated by subsets of roots of
the faces of PΦ. Equivalently, Φ+ is polyhedral if
P+

Φ = PΦ ∩ C(Φ+).
Notice that for A3 and C3, Φ+ is polyhedral while

it is not for B3 as one may see in Figure 1. Moreveor
it is clear that Φ+ is not polyhedral for G2 (see for
example the tables in [2]) and it is easy to show
that Φ+ is not polyhedral for D4; further if Φ+ is
polyhedral then also the set of positive roots of a
subsystem is polyhedral. Hence only A` and C` may
have a polyhedral positive root set and, indeed, this
is proved in [5].

So Φ+ is polyhedral if and only if the positive
lenght map coincides with the lenght map. This
suggest that some result similar to the formula in
Theorem A should holds also for γ 7−→ |γ|+ using
a half–space presentation of P+

Φ .

REFERENCES

1. F. Ardila, M. Beck, S. Hoşten, J. Pfeifle, K.
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Figure 1. The rank 3 root polytopes
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