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Plücker relations and spherical varieties: application to model varieties
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A standard monomial theory for an algebra A
over a field k is given by a set of generators A,
together with a notion of standardness for mono-
mials in A such that A is spanned by standard
monomials as a k–vector space; further the re-
lations in A writing non standard monomials in
terms of standard ones, called straightening rela-
tions, are “upper triangular”. One of the main
purpose of standard monomial theory is to re-
place the knoweldge of the equations defining a
variety by the order requirement in the straight-
ening relations. Indeed in many situation this
weaker property is enough to prove geometric re-
sults like normality, Cohen-Maculay property, de-
generation results and others. Moreover the order
structure of the straightening relations allows to
prove that they are generators for the ideal defin-
ing the algebra A as a quotient of the symmetric
algebra S(A). The first example of such a theory
dates back to Hodge study in [8] of the grassman-
nian of k–spaces in a n–dimensional vector space.

A standard monomial theory for flag and Schu-
bert varieties has been developed over the years
by Lakshmibai, Musili and Seshadri [9], this pro-
gram culminated in the work of Littelmann [10]
(see also [3]) where such a theory is defined in the
generality of symmetrizable Kac–Moody groups.

At the same time, in [5] a standard monomial
theory for the coordinate ring of SLn was reduced
to that of the grassmannian of n–spaces in a 2n–
dimensional space. Next this result was general-
ized in various directions by many authors (see
the introduction in [4] for further details). In our
paper [4], we shown how a standard monomial
theory for certain classes of symmetric varieties
may be described in terms of the Plücker relations
of a suitable, maybe infinite dimensional, grass-
mannians. Moreover all previous known cases of
this type of reduction are particular instances of
our construction for symmetric varieties.

The first purpose of the present research is the
development of a general framework for this re-
duction from the coordinate ring of a variety to
the coordinate ring of a grassmannian. We pro-
pose how a suitable grassmannian for such pro-
cess may be defined if we start with a spherical

variety. However this proposal does not work in
general for all spherical varieties, indeed various
technical hypothesis must be met. It is however
quite general and the hypothesis are fulfilled in
many interesting cases. Let us explains our ap-
proach in more details.

Let G be a semisimple and connected alge-
braic group and let H be an algebraic subgroup
such that X

.
= G/H is spherical. Let Λ be

the weight lattice and Λ+ the monoid of dom-
inant weights with respect to a fixed maximal
torus and Borel subgroup of G. Denote by Ω+

the monoid of spherical weights, i.e. of domi-
nant weights λ such that the H–invariant sub-
space V Hλ of the G–irreducible module Vλ is
non–zero. Our first hypothesis is that Ω+ is a
free monoid; let ε1, ε2, . . . , ε` be its generators.
Then the coordinate ring A of X is generated
by V ∗ε1 , V

∗
ε2 , . . . , V

∗
ε`

. Our aim is to construct a
standard monomial theory having as generators
a basis of V ∗ε1 ⊕ V

∗
ε2 ⊕ · · · ⊕ V

∗
ε`

.
The main request is the existence of a Kac–

Moody group K such that G is the semisimple
part of a Levi of K with the following properties.
There exists a suitable grassmannian F for K, a
G–invariant Richardson variety R ⊂ F and a line
bundle L on F such that X may be embedded
in a completion of F , H0(R,L) ' V ∗ε1 ⊕ V ∗ε2 ⊕
· · · ⊕ V ∗ε` and ⊕n>0H

0(R,Ln) is isomorphic to
the coordinate ring of G/H as G–modules. In a
way, this group K is a bigger group of “hidden”
symmetries for X.

Further we require the existence of an addi-
tive map gr : Ω+ −→ N such that the follow-
ing compatibility with tensor product of spheri-
cal modules holds: for all µ, λ, ν ∈ Ω+ such that
V ∗ν ⊂ V ∗λ ⊗ V ∗µ we have gr(ν) 6 gr(λ + µ). We
require also that the generators ε1, ε2, . . . , ε` are
linearly ordered by gr. Finally a certain compat-
ibility between the function gr and the multipli-
cation of sections in H0(F ,L) is required.

Once all such hypothesis are fulfilled we are
able to prove that the relations among a basis of
V ∗ε1 ⊕V

∗
ε2 ⊕· · ·⊕V

∗
ε`

may be described in terms of
the Plücker relations of F , and for this reason we
call the above general framework plückerization
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for X. Further a standard monomial theory for X
may be described in terms of the standard mono-
mial theory of R. Using this we see that X de-
generates to R in a G–equivariant flat way.

The construction of K, F , R, gr,... follows an
empirical recipe. The main ingredients for this
construction are suggested by the moltiplication
rule of the modules V ∗ε1 , V

∗
ε2 , . . . , V

∗
ε`

. Once these
objects are defined the verifications of the above
technical hypothesis are very uniform for the dif-
ferent varieties in the applications. In particular
this recipe hints how many nodes to add to the
Dynkin diagram of G in order to obtain K; for
the symmetric varieties just one node while for
the model varieties and another class of spherical
variety (see below) two nodes are needed.

Our previous paper [4] follows the above gen-
eral framework applying it to certain classes of
symmetric varieties. Notice however that in that
paper the proof of the existence of a standard
monomial theory derived by that of the bigger
group K is wrong; there we tacitly assumed that
a certain map is G–equivariant and this is not the
case in general. However this work amends that
gap.

Our second aim is the application of the above
described framework to the model varieties of
type A, B and C. A homogeneous model vari-
ety for a semisimple group G is a quasi affine
variety whose coordinate ring is the sum of all
irreducible representations of G with multiplicity
one. These varieties were introduced by Gelfand
in [1] and studied by Gelfand and Zelevinsky in [6]
and [7]. In particular for a homogeneous model
variety G/H we have Ω+ = Λ+.

In the cited papers the authors provided an em-
bedding of the model varieties for classical groups
as an open subset of a grassmannian of a bigger
finite dimensional group; hence there are some
similarities with our program. From the geomet-
rical viewpoint the construction of Gelfand and
Zelevinsky is more natural than our approach.
However their embedding is not suitable for the
application to the standard monomial theory hav-
ing as generators a basis of V ∗ε1 ⊕ V

∗
ε2 ⊕ · · · ⊕ V

∗
ε`

.
Indeed it is for this purpose that we need to use a
more complicated infinite dimensional grassman-
nian for model varieties of type B and C. The two
approaches coincide for the model variety of type
A for which we use a finite dimensional lagrangian
grassmannian.

Finally we study a further application of our
framework to another class of spherical varieties
listed as (15) in the paper [2] page 656. For this
example the recipe for the construction of K is a
bit different of the above reported one; this class
of varieties show how our program may be applied

in other cases.
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