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A pseudo-Riemannian manifold (M, g) is (lo-
cally) homogeneous if for any two points p, q ∈M ,
there exists a (local) isometry φ, mapping p to q.
Homogeneous and locally homogeneous manifolds
are among the most investigated object in Differ-
ential Geometry, also for their physical applica-
tions. In this framework, natural problems are
to classify all homogeneous pseudo-Riemannian
manifolds (M, g) of a given dimension, and to de-
termine examples with special geometric proper-
ties. This problem has been intensively studied,
especially in the low-dimensional cases.

Ricci solitons. Ricci solitons were introduced
by Hamilton and they are a natural generalization
of Einstein metrics. A pseudo-Riemannian metric
g on a smooth manifold M is called a Ricci soliton
if there exists a a smooth vector field X, such that

LXg + % = λg, (1)

where LX denotes the Lie derivative in the di-
rection of X, % denotes the Ricci tensor and λ
is a real number. A Ricci soliton g is said to
be a shrinking, steady or expanding according to
whether λ > 0, λ = 0 or λ < 0, respectively.

Ricci solitons are the self-similar solutions of
the Ricci flow and are important in understand-
ing its singularities. The interest in Ricci solitons
has also risen among theoretical physicists in re-
lation with String Theory. After their introduc-
tion in the Riemannian case, the study of pseudo-
Riemannian Ricci solitons attracted a growing
number of authors (see for instance the references
inside [1] and [2]).

If M = G/H is a homogeneous space, a homo-
geneous Ricci soliton on M is a G-invariant met-
ric g for which equation (1) holds. In particular,
by an invariant Ricci soliton we mean a homoge-
neous one, such that equation (1) is satisfied by
an invariant vector field.

It is a natural question to determine which ho-
mogeneous manifolds G/H admit a G-invariant
Ricci soliton. All known examples of homoge-
neous Riemannian Ricci soliton metrics on non-
compact homogeneous manifolds are isometric to
some solvsolitons, that is, to invariant Ricci soli-
tons on a solvable Lie group.

The difference between Riemannian and
pseudo-Riemannian settings lead to different re-
sults concerning the existence of homogeneous
Ricci solitons.

With regard to the three-dimensional case,
although there exist three-dimensional Rieman-
nian homogeneous Ricci solitons, a strong rigid-
ity result holds: there are no left-invariant
Ricci solitons on three-dimensional Riemannian
Lie groups. On the other hand, left-invariant
Ricci solitons on three-dimensional Lorentzian
Lie groups were classified in [1]. Indeed, the
three-dimensional Lorentzian case allows the ex-
istence of expanding, steady and shrinking left-
invariant Ricci solitons.

By a previous result of the first author, three-
dimensional locally homogeneous Lorentzian
manifolds are either locally symmetric or lo-
cally isometric to a three-dimensional Lie group
equipped with a left-invariant Lorentzian metric.
Locally symmetric Lorentzian three-manifolds
which are not of constant sectional curvature are
either locally isometric to a Lorentzian product
of a real line and a surface of constant Gauss cur-
vature, or they are Walker manifolds with a two-
step nilpotent Ricci operator. It is clear that, in
addition to Einstein spaces, products Nk(c) × R
with Nk(c) of constant sectional curvature are
Ricci solitons, in both the Riemannian and the
Lorentzian case. By a non-trivial Ricci soliton,
one means a Ricci soliton which is neither Ein-
stein nor a product Nk(c)×R. Ricci solitons on
Walker manifolds were considered in [1], proving
the existence of expanding, steady and shrinking
locally symmetric Ricci solitons.

From the explicit classifications obtained in [1],
the following geometric characterization follows,
in terms of the canonical form (Segre type) of the
Ricci operator:

THEOREM: A complete and simply connected
three-dimensional homogeneous Lorentzian man-
ifold is a non-trivial Ricci soliton if and only if
the Ricci operator R̂ic is not diagonalizable and
has exactly three equal eigenvalues, that is, R̂ic
is either of Segre type {3} or of degenerate Segre
type {21}.
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A homogeneous pseudo-Riemannian manifold
(M, g) is said to be reductive if M = G/H and
the Lie algebra g can be decomposed into a direct
sum g = h⊕m, where m is an Ad(H)-invariant
subspace of g. It is well known that when H is
connected, this condition is equivalent to the al-
gebraic condition [h,m] ⊆m. In the study of ho-
mogeneous pseudo-Riemannian manifolds, a fun-
damental difference arises between the Rieman-
nian case and the non Riemannian one. In fact,
while any homogeneous Riemannian manifold is
reductive, in dimension four and higher there ex-
ist homogeneous pseudo-Riemannian manifolds
which do not admit any reductive decomposition.

Four-dimensional Ricci solitons on non-
reductive homogeneous pseudo-Riemannian man-
ifolds were classified in [2], for solutions of (1)
determined by vector fields V ∈ m. Non-trivial
examples appear both in the Lorentzian case and
for metrics of neutral signature (2, 2).

Other aspects of the geometry of four-
dimensional non-reductive homogeneous pseudo-
Riemannian four-manifolds were studied in [2]
as well. In particular, invariant complex struc-
tures were classified, and it was proved that four-
dimensional non-reductive homogeneous pseudo-
Riemannian manifolds do not admit non-trivial
pseudo-Kähler homogeneous Ricci solitons.

Harmonicity of vector fields on four-
dimensional generalized symmetric spaces.

Let (M, g) be a connected pseudo-Riemannian
manifold and x a point of M . A symmetry at x
is an isometry sx of M , having x as isolated fixed
point. When (M, g) is a symmetric space, each
point x admits a symmetry sx reversing geodesics
through the point. Hence, sx is involutive for all
x. Generalizing this property, A.J. Ledger defined
a regular s-structure as a family {sx : x ∈M} of
symmetries of (M, g), satisfying, for all points x, y
of M ,

sx ◦ sy = sz ◦ sx, z = sx(y).

The order of an s-structure is the least integer
k ≥ 2, such that (sx)k = idM for all x (it may be
that k = ∞). A generalized symmetric space is
a connected pseudo-Riemannian manifold (M, g)
admitting a regular s-structure. The order of a
generalized symmetric space is the infimum of all
integers k ≥ 2 such that M admits a regular s-
structure of order k.

Generalized symmetric spaces have been in-
tensively studied under different points of view
(see for example the References in [3]). In [3],
harmonicity properties of vector fields on four-
dimensional pseudo-Riemannian generalized sym-
metric spaces have been studied.

Consider a (smooth, oriented, connected) n-
dimensional pseudo-Riemannian manifold (M, g),
and its tangent bundle TM , equipped with the

Sasaki metric gs (also referred to as the Kaluza-
Klein metric in Mathematical Physics). Given
a smooth vector field V on M , the energy of V
is, by definition, the energy of the corresponding
smooth map V : (M, g)→ (TM, gs), that is,

E(V ) =
1

2

∫
M

(trgV
∗gs)dv

(for M compact; in the non-compact case, one
works over relatively compact domains). If V :
(M, g) → (TM, gs) is a critical point for the en-
ergy functional, then V is said to define a har-
monic map. A vector field V defines a har-
monic map if and only if its tension field τ(V ) =
tr(∇2V ) vanishes, that is,

tr[R(∇·V, V )·] = 0 and ∇∗∇V = 0,

where with respect to a pseudo-orthonormal local
frame {e1, .., en} on (M, g), with εi = g(ei, ei) =
±1 for all indices i, one has

∇∗∇V =
∑
i

εi
(
∇ei∇eiV −∇∇eieiV

)
.

When g is Riemannian and M is compact, the
only vector fields defining harmonic maps are
the parallel ones. The weaker condition that
V : (M, g) → (TM, gs) is a critical point for the
energy functional E|X (M), restricted to maps de-
fined by vector fields, leads again to parallel vec-
tor fields.

The existence of parallel vector fields is a rare
phenomenon, which has strong consequences on
the manifold itself. In particular, a Riemannian
manifold admitting a parallel vector field is lo-
cally reducible, and the same is true for a pseudo-
Riemannian manifold admitting an either space-
like or time-like parallel vector field. This led to
consider different situations, where some interest-
ing types of non-parallel vector fields can be char-
acterized in terms of harmonicity properties.

Let ρ 6= 0 be a real constant and X ρ(M) =
{W ∈ X (M) : ||W ||2 = ρ2}. Then, one can con-
sider vector fields V ∈ X ρ(M) which are crit-
ical points for the energy functional E|Xρ(M),
restricted to vector fields of the same constant
length. The Euler-Lagrange equations of this
variational condition is

∇∗∇V is collinear to V.

This characterization, first proved in the Rieman-
nian case, remains valid in pseudo-Riemannian
settings, provided that ρ 6= 0, that is, if V is not
light-like. Although the case of light-like vector
fields is more delicate to deal with, if V is a light-
like vector field then the above equation is still a
sufficient condition so that V is a critical point
for the energy functional E|X 0(M), restricted to
light-like vector fields.
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In pseudo-Riemannian settings, the same criti-
cal point conditions turn out to be much less re-
strictive than for Riemannian manifolds and can
be satisfied by some interesting non-parallel vec-
tor fields. In [3], harmonicity properties of vec-
tor fields on four-dimensional pseudo-Riemannian
generalized symmetric spaces have been studied.
These spaces, classified into four different types,
are good candidates for such an investigation, as
their Levi-Civita connection and curvature, al-
though rather simple to describe, are far from
trivial. In particular, in most of the cases, no
parallel vector fields occur. Let M = G/H be a
four-dimensional pseudo-Riemannian generalized
symmetric space, and g = h⊕m the correspond-
ing decomposition of the Lie algebra g of G. Once
applied to vector fields belonging to m, the above
conditions translate into some systems of alge-
braic equations for the components of these vec-
tor fields. Some interesting behaviours are found.
Examples corresponding to invariant vector fields
have been pointed out. Vector fields which also
define harmonic maps have been completely clas-
sified. Finally, the energy of all these vector fields
has been explicitly calculated.
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