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Characterizing the quality of self-emerging so-
lutions in non-cooperative systems is one of the
leading research direction in Algorithmic Game
Theory. Given a game G, a social function F
measuring the quality of any solution which can
be realized in G, and the definition of a set E
of certain self-emerging solutions, we are asked
to bound the ratio Q(G, E ,F) := F(K)/F(O),
where K is some solution in E(G) (usually either
the worst or the best one with respect to F) and
O is the solution optimizing F .
In the last ten years, there has been a flour-

ishing of contribution in this topic and, after a
first flood of unrelated results, coming as a direct
consequence of the fresh intellectual excitement
caused by the affirmation of this new research di-
rection, a novel approach, aimed at developing a
more mature understanding of which is the big
picture standing behind these problems and their
solutions, is now arising.
In such a setting, Roughgarden [6] proposes

the so-called “smoothness argument” as a uni-
fying technique for proving tight upper bounds
on Q(G, E ,F) for several notions of self-emerging
solutions E , when G satisfies some general prop-
erties, K is the worst solution in E(G) and F is
defined as the sum of the players’ payoffs. He
also gives a more refined interpretation of this ar-
gument and stresses also its intrinsic limitations,
in a subsequent work with Nadav [5], by means
of a primal-dual characterization which shares lot
of similarities with the primal-dual framework we
provide in this paper.
Anyway, there is a subtle, yet substantial, dif-

ference between the two approaches and we be-
lieve that the one we propose is more general and
powerful. Both techniques formulate the prob-
lem of bounding Q(G, E ,F) via a (primal) linear
program and, then, an upper bound is achieved
by providing a feasible solution for the related
dual program. But, while in [5] the variables
defining the primal formulation are yielded by the
strategic choices of the players in both K and
O (as one would expect), in our technique the
variables are the parameters defining the play-
ers’ payoffs in G, while K and O play the role
of fixed constants. Such an approach, although
preserving the same degree of generality, applies

to a broader class of games and allows for a sim-
ple analysis facilitating the proof of tight results.
In fact, as already pointed out in [5], the Strong
Duality Theorem assures that each primal-dual
framework can always be used to derive the ex-
act value of Q(G, E ,F) provided that, for any so-
lution S which can be realized in G, F(S) can
be expressed though linear programming and (i)
the polyhedron defining E(G) can be expressed
though linear programming, when K is the worst
solution in E(G) with respect to F , (ii) the poly-
hedron defining K can be expressed though lin-
ear programming, when K is the best solution in
E(G) with respect to F . Moreover, in all such
cases, by applying the “complementary slackness
conditions”, we can figure out which pairs of so-
lutions (K,O) yield the exact value of Q(G, E ,F),
thus being able to construct quite systematically
matching lower bounding instances.
We consider three sets of solutions E , namely,

(i) ϵ-approximate pure Nash equilibria (ϵ-PNE),
that is, outcomes in which no player can im-
prove her situation of more than an additive fac-
tor ϵ by unilaterally changing the adopted strat-
egy (in this case, Q(G, E ,F) is called the approx-
imate price of anarchy of G (ϵ-PoA(G)) when K
is the worst solution in E(G), while it is called
the approximate price of stability of G (ϵ-PoS(G))
when K is the best solution in E(G)); (ii) pure
Nash equilibria (PNE), that is, the set of out-
comes in which no player can improve her situa-
tion by unilaterally changing the adopted strat-
egy (by definition, each 0-PNE is a PNE and the
terms price of anarchy (PoA(G)) and price of sta-
bility (PoS(G)) are used in this case); (iii) so-
lutions achieved after a one-round walk starting
from the empty strategy profile, that is, the set
of outcomes which arise when, starting from an
initial configuration in which no player has done
any strategic choice yet, each player is asked to
select, sequentially and according to a given or-
dering, her best possible current strategy (in this
case, K is always defined as the worst solution in
E(G) and Q(G, E ,F) is denoted by Apx1∅(G)).
Our method reveals to be particularly powerful

when applied to the class of weighted congestion
games. In these games there are n players com-
peting for a set of resources. These games have



2

a particular appeal since, from one hand, they
are general enough to model a variety of situa-
tions arising in real life applications and, from
the other one, they are structured enough to al-
low a systematic theoretical study. For exam-
ple, for the case in which all players have the
same weight (unweighted players), Rosenthal [7]
proved through a potential function argument
that PNE are always guaranteed to exist, while
general weighted congestion games are guaran-
teed to possess PNE if and only if the latency
functions are either affine or exponential [3,4].
In order to illustrate the versatility and useful-

ness of our technique, we first consider the well-
known and studied case in which the latency func-
tions associated with the resources are affine and
F is the sum of the players’ payoffs and show how
all the known results (as well as some of their
generalizations) can be easily reobtained under
a unifying approach. For ϵ-PoA and ϵ-PoS in
the unweighted case and for Apx1∅, we reobtain
known upper bounds with significatively shorter
and simpler proofs (where, by simple, we mean
that only basic notions of calculus are needed in
the arguments), while for the generalizations of
the ϵ-PoA and the ϵ-PoS in the weighted case, we
give the first upper bounds known in the litera-
ture.
After having introduced the technique, we show

how it can be used to attack the more challeng-
ing case of polynomial latency functions. In such
a case, the PoA and ϵ-PoA were already stud-
ied and characterized in [1] and [2], respectively,
and both papers pose the achievement of upper
bounds on the PoS and ϵ-PoS as a major open
problem in the area. For unweighted players,
we show that, for any congestion game G with
quadratic latency functions, PoS(G) ≤ 2.362 and
Apx1∅(G) ≤ 37.5888 and that, for any congestion
game G with cubic latency functions, PoS(G) ≤
3.322 and Apx1∅(G) ≤ 527.323.
What we would like to stress here is that, more

than the novelty of the results achieved in this
paper, what makes our method significative is its
capability of being easily adapted to a variety of
particular situations and we are more than sure
of the fact that it will prove to be a powerful tool
to be exploited in the analysis of the efficiency
achieved by different classes of self-emerging so-
lutions in other contexts as well. To this aim, we
show how the method applies also to other so-
cial functions, such as the maximum of the play-
ers’ payoffs, and to other subclasses of congestion
games such as resource allocation games with fair
cost sharing (note that, in the latter case, as well
as in the case of polynomial latency functions, the
primal-dual technique proposed in [5] cannot be
used, since the players’ costs are not linear in the
variables of the problem).
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