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In digital goods auctions, also known as unlim-
ited supply auctions, an auctioneer sells a collec-
tion of identical items to unit-demand bidders.
As usual in this setting, when getting the item,
a bidder experiences a certain utility which is
unknown to the auctioneer. Given this restric-
tion, the auctioneer wants to design a mecha-
nism, i.e., a set of auction rules, so as to raise as
much revenue as possible from the bidders. The
competitiveness of a certain mechanism is usually
measured with respect to the maximum revenue
that can be raised by an omniscient auctioneer
who is restricted to offer the goods at the same
price to all bidders (fixed-price scheme). One can
ask whether this is a reasonable restriction, and
whether without this restriction, the auctioneer
can achieve a considerably higher revenue.
Immorlica et al. [1] provided an answer to this

question for the case of ascending auctions with
anonymous bidders. More precisely, they consider
the scenario in which i) the auctioneer knows the
set of the bidders’ utilities, but is unable to de-
termine which bidder has which utility, and ii)
during the auction, the auctioneer can only rise
the price offered to a bidder. In particular, Im-
morlica et al. [1] show that, under conditions i)
and ii), no mechanism can raise a revenue of more
than a constant time the one raised by the best
fixed-price scheme.
Such a result is achieved by introducing and

studying the balloon popping problem which is de-
fined as follows.

We are given n undistinguishable balloons of
capacities 1, 1/2, 1/3, . . . , 1/n and we are asked to
blow them so as to maximize the total volume of
air inflated in the balloons knowing that a balloon
blown up beyond its capacity pops (and reveals its
capacity) thus giving no contribution to the total
volume. What is the best blowing strategy and
what total volume is achievable?

A blowing strategy is said to be offline if it has
the chance to get back to an already-inflated bal-
loon and inflate it further, while it is said to be on-
line if it has to process the balloons sequentially,
but is granted the knowledge of the balloon’s ca-
pacity as soon as it is processed, regardless of

whether or not it popped. Hence, an online blow-
ing strategy must take irrevocable decisions in a
scenario in which it has full knowledge of the set
of capacities of the remaining balloons, while an
offline blowing strategy has no particular restric-
tions on how to process the balloons, but it has to
operate in a scenario with incomplete knowledge.
Let OFFn and ONn be the expected total vol-
ume achievable by the optimal offline and online
blowing strategy, respectively. For any fixed inte-
ger n ≥ 1, denote as Yk the family of all subsets of
{1, 1/2, . . . , 1/n} of size k, where each Y ∈ Yk is
of the form {1/y1, . . . , 1/yk}, with y1 < . . . < yk;
so Y ∈ Yk is a set of k balloons listed in decreas-
ing order.
Immorlica et al. [1] prove that under condi-

tions i) and ii) stated above, for any set of n bid-
ders with arbitrary utilities, the expected revenue
of any mechanism is at most OFFn times the
one raised by the best fixed-price scheme. In or-
der to upper bound OFFn, they first show that
OFFn ≤ ONn for any positive integer n, then
they determine the optimal online blowing strat-
egy, thus proving that

ONn =
n∑

k=1

∑
Y ∈Yk

max1≤j≤k{j/yj}(
n
k

)
· k

, (1)

and finally they show that ON∞ ≤ 4.331. More-
over, they prove that a greedy mechanism, that is,
the offline blowing strategy which tries to blow up
each balloon at the maximum possible capacity,
achieves an expected volume equal to

∑n
i=1 1/i
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which implies OFF∞ ≥ π2/6 ≈ 1.6449.
Jung and Chwa [2] improved these bounds

by designing an offline blowing strategy, called
Bunch, yielding OFF∞ ≥ 1.6595 and proving
that the right hand side of Equation (1) is at
most 2 − Hn/n, which yields ON∞ ≤ 2. They
also formulate a conjecture which, whenever true,
would giveONn ≥ 2−(2Hn−1)/n, thus implying
ON∞ = 2.
We further improve the lower bound on OFF∞

by designing an offline blowing strategy, that we
call Groupk. This strategy works by partitioning
the n− 1 smallest balloons into (n− 1)/k groups
of size k and then applying an ad-hoc (possibly
optimal) strategy to the first of these groups and
a simple basic blowing strategy to each of the
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remaining ones. The performance of Groupk im-
proves when k increases and better lower bounds
can be achieved by delving into a more detailed
analysis covering higher values of k. For k = 5,
we achieve OFF∞ ≥ 1.68.
We also focus on the exact computation of

ONn for any integer n ≥ 1. To this aim, note that
the characterization of ONn given by Immorlica
et al. [1] through Equation (1) is neither easy
to be analytically analyzed nor efficiently com-
putable, since it requires to generate all subsets
of a set of cardinality n whose number is expo-
nential in n. We give an alternative exact formula
for ONn which, although remaining of challeng-
ing analytical analysis, can be computed by an al-
gorithm of running time O(n5). This allows us to
disprove the conjecture formulated by Jung and
Chwa [2] (which was experimentally verified only
for n ≤ 21) as soon as n ≥ 44 and to provide
an empirical evidence that ON∞ < 2. We hence
conjecture that

ONn ≤
n∑

i=1

1

i2
+

1

2n

n∑
i=2

(
n− i

n
− 1

i+ 1

)
. (2)

The validity of this new conjecture, which thanks
to our algorithm can be verified for n in the
order of the hundreds, would imply ON∞ ≤
π2/6+1/4 ≈ 1.8949. Such a value matches an ex-
periment conducted by Immorlica et al. [1] who
estimated ON1000 by applying the optimal on-
line blowing strategy on a sample of 105 random
sequences of balloons.
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