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The numerical approximation of matrix func-
tions and the numerical solution of differential
equations of fractional order are important and
challenging topics which recover a fundamental
role in several branches of applied sciences as bi-
ology, physics, engineering and many others [2,7].
Matrix functions arise for example in control

theory, when continuous-time systems need to
be converted into discrete-time state-space sys-
tems and the matrix exponential comes into play.
Analogously, the Solomon equations for the nu-
clear magnetic resonance can be solved by means
of matrix functions. However, the most common
application field is the solution of systems of or-
dinary or partial differential equations.
In recent years the attention to fractional dif-

ferential equations has reached new and relevant
levels. They are generalization of ordinary differ-
ential equations to arbitrary (noninteger) order;
their strength is in capturing the nonlocal rela-
tions in space and time with power law memory
kernels. This aspect makes them very effective
to model problems with “memory” or anomalous
diffusion; on the other hand it is hard to tackle
from a numerical point of view thus to motivate
the active research devoted to the subject in the
last period.
Matrix functions and differential equations of

fractional order are related to each other since,
as widely described in [3], the solution of a linear
system of fractional differential equations can be
often written in terms of the Mittag–Leffler func-
tion evaluated in a suitable matrix argument.
In the context of matrix functions’ approxi-

mation we have recently focused on a restarted

version of the Shift-and-Invert Krylov subspace
methods, as introduced in [8] and deepened in
[10]. The key issue of our work [9] are the new
error estimates for the Krylov subspace methods:
such estimates give insights into the selection of
the shift parameter and lead to a simple and ef-
fective restart procedure, with relevant saving in
terms of computational time and memory require-
ment. In particular, we applied it to the class of
Mittag–Leffler functions, typical of the fractional

calculus, with very nice results.
The numerical approximation of the Mittag–

Leffler function itself represents an important
topic for the scientific research; more precisely,
for the numerical solution of fractional differ-
ential equations, a class of functions generaliz-
ing the Mittag-Leffler plays a fundamental role.
Unfortunately, the numerical approximation of
these functions presents some difficulties, even for
scalar arguments. In [6] we tackled this problem,
with a deep analysis to identify the optimal pa-
rameters to describe the contour used to define
the generalized Mittag-Leffler functions by means
of the Cauchy integral. The recovered parameters
work very well, with good results also when the
evaluation on matrix arguments is required.
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