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In image restoration the term inpainting denotes the process of filling the missing information in subdo-
mains where a given image is damaged: these domains may correspond to scratches in a camera picture,
occlusion by objects, blotches in an old movie film or aging of canvas and colors in a painting ([ 3], [ 4],
[ 15]).
Minimization of Blake & Zisserman functional is a variational approach to segmentation and denoising
in image analysis which deals with free discontinuity, free gradient discontinuity and second derivatives:
this second order functional was introduced to overcome the over-segmentation of steep gradients (ramp
effect) and other drawbacks which occur in lower order models as in case of Mumford & Shah functional
(see Ref. [ 18]). We refer to [ 1], [ 15], [ 9], for motivation and analysis of variational approach to image
segmentation and digital image processing.
In this paper we face the inpainting problem for a monochromatic image with a variational approach:
solving a Dirichlet type problem for the main part of Blake & Zisserman functional. A similar problem
was studied in [ 11] with the aim of finding a segmentation of a given noisy image.
Mumford & Shah model has been adapted by several authors to the inpainting problem, but some
inconvenient has been detected in this approach (see Ref. [ 15]). In the Mumford & Shah model (see
Ref. [ 17], [ 18]), the preferable edge curves are those which have the shortest length, therefore it favours
straight edges and it produces the emerging of artificial corners. In the Blake & Zisserman model, the
presence of second derivatives smooths such corners.
About minimization of the Blake & Zisserman functional under Neumann boundary condition we refer
to [ 8]. For a description of the rich list of differential, integral and geometric extremality conditions we
refer to [ 9]. The results of the paper [ 11] were deeply exploited in [ 10] and [ 12] to study fine properties
of local minimizers of Blake & Zisserman functional under Neuman boundary condition, particularly
about their singular set related to optimal segmentation; in the present paper they are applied to the
derivation and study of a variational algorithm for image inpainting.

In this paper we propose two different second order functionals Eδ and F δ to deal with image inpainting.
The two functionals respectively focus on the cases of complete or partial loss of information in a small
subregion.
First we focus on the functional E, which is defined as follows:

E(K0,K1, v) =
∫
Ω\(K0∪K1)

∣∣D2v
∣∣2 dx+ αH1

(
K0 ∩ Ω

)
+ βH1

(
(K1 \K0) ∩ Ω

)
. (1)

To face the inpainting problem we look for minimizers of Eδ = E(K0,K1, v)+δ
∫
Ω
|v|2 dx, with α, β, δ > 0,

among admissible triplets (K0,K1, v), say triplets fulfilling





K0 , K1 Borel subsets of R2, K0 ∪K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪K1)

)
, v approximately continuous in Ω̃ \K0,

v = w a.e. in Ω̃ \ Ω ,

(2)

where Ω ⊂⊂ Ω̃ ⊂⊂ R
2 are open sets, Ω with piecewise C2 boundary and w is a given function in Ω̃ \ Ω.

The raw image under processing is damaged due to the presence of blotches in the set Ω: the noiseless
brightness intensity w of the image is known in Ω̃\Ω while is completely lost in the possibly disconnected
set Ω.
If (K0,K1, u) is a minimizing triplet of Eδ, then u provides the inpainted restoration of the whole image,
and K0∪K1 can be interpreted as an optimal segmentation of the restored image: the three elements of a
minimizing triplet (K0,K1, u) play respectively the role of edges, creases and smoothly varying intensity

in the region Ω̃ \ (K0 ∪K1) for the segmented image.
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Our result for monochromatic images is stated below in Theorem 1 in the simplified case when the image
is smooth where damage does not occur.
About RGB color images, we refer to a forthcoming paper ([ 14]).

Theorem 1. Let α, β, δ, Ω, Ω̃ and w be s.t.

0 < β ≤ α ≤ 2β, δ > 0 (3)

Ω ⊂⊂ Ω̃ ⊂⊂ R
2 , (4)

Ω is an open set with piecewise C2 boundary ∂Ω , Ω̃ is an open set, (5)

w has a C2(Ω̃) extension which fulfils D2w ∈ L∞(Ω̃ ) . (6)

Then there exists a triplet (C0, C1, u) which minimizes the functional

Eδ(K0,K1, v) := E(K0,K1, v) + δ

∫

Ω

|v|2 dx (7)

with finite energy, among admissible triplets (K0,K1, v) according to (1), (2),
Moreover any minimizing triplet (K0,K1, v) fulfils:

K0 ∩ Ω and K1 ∩ Ω are (H1, 1) rectifiable sets, (8)

H1(K0 ∩ Ω) = H1(Sv) , H1(K1 ∩ Ω) = H1(S∇v \ Sv) , (9)

{
v ∈ GSBV 2(Ω̃), hence

v and ∇v have well defined two-sided traces, finite H1 a.e. onK0 ∪K1 ,
(10)

where Sv and S∇v respectively denote the singular sets of v and ∇v.

The main result of this paper is in Theorem 2 (which is not reported here): the statement is quite
technical but it is a more useful tool than Theorem 1, since it deals with discontinuity and gradient
discontinuity in Ω̃ \ Ω of the given raw image w to be processed, together with some additional noisy
information denoted by g in a Borel subset Ω \ U , where

U ⊂⊂ Ω ⊂⊂ Ω̃. (11)

Theorem 2 provides the existence of minimizers for the second functional proposed in this paper, which
is labeled with F δ and deals with the noisy part of the image adding a fidelity term to the functional Eδ.
Precisely, we set

F δ(K0,K1, v) = Eδ(K0,K1, v) + µ
∫
Ω\U

|v − g|
2
dx (12)

and we look for minimizers of F δ(K0,K1, v) among triplets (K0,K1, v) verifying (2). We apply direct
methods of Calculus of Variations to functional (12) by proving the partial regularity for solutions of a
weak version Fδ of (12).

We emphasize that if (K0,K1, v) is a minimizing triplet of F δ than v fulfils the Euler equations

∆2v + µ(v − g) = 0 in Ω \ (U ∪K0 ∪K1), (13)

∆2v + δv = 0 in U \ (K0 ∪K1) (14)

together with many kind of integral and geometric relationships as like as minimizing triplet of Blake &
Zisserman functional for image segmentation (see [ 9], [ 12]).
To achieve the existence of minimizing triplets of F δ, inspired by the seminal paper of De Giorgi and
Ambrosio [ 16], we introduce a relaxed functional: the weak Blake & Zisserman functional for inpainting
Fδ(v). The idea is to deal with a simpler object, just depending on the function v, and then to recover
the set of jumps K0 and creases K1 \K0 by taking respectively the discontinuity set Sv and S∇v \ Sv.
The functional class where we set the problem is given by second order generalized functions with special
bounded variation: say GSBV 2(Ω̃). The class GSBV 2(Ω̃) is the right functional setting, more appropriate

than BH(Ω̃) (bounded hessian functions whose second derivatives are Radon measure). Indeed BH
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Figure 1. Theorem 1: the image domain is the rectangle Ω̃, the blotches Ω ⊂⊂ Ω̃ with complete loss of
information are the black region Ω.

Figure 2. Theorem 2: the image domain is the rectangle Ω̃, the blotches Ω ⊂⊂ Ω̃ with some loss of
information, complete loss of information in the black region U , the partially damaged image is given in
the gray region Ω \ U .

functions in two variables are continuous with integrable gradient; nevertheless BH contains too much
irregular functions: admissible functions may have gradient with nontrivial Cantor part.
In this framework compactness and lower semicontinuity Theorems 8 and 10 of [ 7] give the existence of
minimizers for the relaxed functional Fδ(v). The results of Theorems 1 and 2 are achieved by showing
partial regularity of the obtained weak solution with penalized Dirichlet datum. The novelty here consists
in the regularization at the boundary for a free gradient discontinuity problem with Dirichlet datum (in
the set ∂Ω) or transmission condition (in the set ∂U).
A numerical scheme, based on the theory of Γ-convergence, as in [ 2] and [ 5], the convergence analysis

and its implementation are contained in a forthcoming paper [ 13].
We conclude by showing some pictures obtained in numerical experiments which exploit the variational

approximation of the functional (12): Figures 3 and 4 where the inpainting algorithm removes masks or
overlapping text.

Figure 3. Inpainting of a circle without introducing artificial corners.
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Figure 4. Text removal.
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