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The interest in Silicon photomultipliers (SiPM)
or Multi-Pixel Photon Counters (MPPC) has
been increasingly spreading because of several ad-
vantages with respect to ordinary photomultipli-
ers, i.e. low-voltage operation, small sizes, single
photon counting capabilities, magnetic field im-
munity. In the present work [1] we have investi-
gated the time and energy resolution of two com-
mercial SiPM with different number of cells, in or-
der to evaluate their applicability as few photons
detector in a Ring Imaging Cherenkov counter
(RICH).

The two sensors are the Hamamatsu Photon-
ics models S10362-11-050P and S10362-33-050C,
with main features listed in Fig. 1, both having
single cell size of 50 × 50 µm2.

Figure 1. Specifications of the two Silicon pho-
todetectors studied.

MPPCs are known to perform very well in tim-
ing measurements owing to their typical signal
shape, having very short rise time. As a matter of
fact, the timing performance is dominated by the
front-end electronics bandwidth. For the present
measurements a 63× pre-amplification/shaping
board (Fig. 2) was designed based on the scheme
suggested by Hamamatsu.

Amplification is mandatory for the detection
of small pulses corresponding to a little average
number of photons. Sample signals with no light

Figure 2. Layout of the front-end electronics.

excitation of the sensor are displayed in Fig. 3.

Figure 3. Dark-Count of the 400 cells SiPM. Hori-
zontal Scale: 5 ns/div; Vertical Scale: 20 mV/div.

The measurement set-up is illustrated in Fig. 4.
The light source was a solid state laser PIL040SM
by Advanced Laser Diode Systems Berlin, Ger-
many, emitting short (σ=20 ps) pulses at wave-
length λ = (409±1) nm, with externally triggered
repetition rate, chosen to be 25 Hz.
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Figure 4. Sketch of the time resolution measure-
ment setup.

Figure 5. Charge-amplitude correlation.

The light pulse was directed to the MPPC, en-
closed in a lightproof box, through fiber optics.
The signal from the MPPC front-end board was
subsequently split in order to get time and en-
ergy simultaneous measurements. Energy was ob-
tained by a Peak Sensing ADC Ortec AD811 (1
mV/channel), while time was measured with re-
spect to the laser pulse trigger time by means of
a TDC CAEN C414 (25 ps/channel).

Time resolution is then measured by the width
of the time distribution between the start time
of the trigger and the time tag of the signal gen-
erated by the MPPC. Peak sensing rather than
charge digitizer was chosen because of its immu-
nity to afterpulses, which spoil the photoelectron
resolution, as illustrated by the charge-amplitude
scatter plot (Fig. 5).

The event-by-event analysis, owing to the time-
energy correlation, allowed to tag the individual
photoelectron contribution to time resolution, by
means of event selection on the energy value (in-
dividual peaks in sample Fig. 6).

The measurements were performed for several
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Figure 6. Energy response (photoelectron peaks)
of the 400 cells SiPM at a voltage of 70.3 V and
10% laser power.

Figure 7. Time resolution (sigma) as a function
of overvoltage VOV of individual photoelectrons
levels for the SiPM of 400 cells.

values of the over-voltage, which allows for gain
adjustment. Time spectra acquired from the
TDC in each run and photoelectron-selected were
analyzed by gaussian fit and the σ values were
extracted (Fig. 7). Present results show that the
major contribution to resolution comes from the
detection of the first photoelectron and that it de-
creases with increasing over-voltage. Energy res-
olution was extracted through a peak fitting pro-
cedure. For a given n-th photoelectron, the corre-
sponding resolving power was quoted as the max-
imum number k of photons which can be counted
in the spectrum (Fig. 8) such that n × σk = d,
where d is the distance between two subsequent
peaks, σ2

k = σ2
noise + kσ2

1 , σ2
1 is the standard de-

viation of the first photoelectron peak.
Results of this analysis for the 400 pixel detec-
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Figure 8. Energy resolution analysis for the 400
cells SiPM.

tor are summarized in Fig. 9. Results for the 3600
pixel detector are similar, however affected by
a larger dark counts and cross-talk which spoils
(Fig. 10) the resolution significantly.

Figure 9. Energy resolution as a function of over-
voltage VOV for the 400 cells SiPM.

REFERENCES

1. G. Galetta, “Risoluzioni energetiche e tem-
porali di rivelatori SiPM”, Tesi di Laurea
Magistrale in Fisica, Curriculum di Tecnolo-
gie Fisiche Innovative, Bari, 2012 and refer-
ences therein

Figure 10. Energy resolution as a function of
overvoltage VOV for the 3600 pixels device.


